Skip to main content
Log in

Geochemistry of ultramafic, mafic, and felsic xenoliths from the Gölcük (Isparta, SW Turkey) alkali rocks: genetic relationship with arc magmas

  • ICCESEN 2017
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2019

This article has been updated

Abstract

In the Isparta Province (SW Anatolia), the Gölcük volcanism comprises of many medium-to-small volume trachyte, trachyandesite, basaltic trachyandesite, phonolite, lamprophyre dome and dykes, and pyroclastic deposits. The domes and dikes together with the explosive volcanism have been occurred at various time intervals throughout the geological history and contain three groups of xenoliths felsic, mafic, and ultramafic. Felsic xenoliths with syenitic and syeno-dioritic composition have inequigranular textures. Mafic xenoliths consist of inequigranular textured gabbroic and monzodioritic rocks. The third group is ultramafic xenoliths with pyroxenitic, equigranular textures. The Gölcük volcanic rocks have intermediate to basic compositions, having shoshonitic to ultrapotassic characteristics. Major element modeling shows that fractional crystallization is the main petrogenetic process in the evolution of the magma. They have high large ion lithophile (LIL) element (Th, K, Sr, Ba) concentrations but are low in high field strength (HFS) element (Nb, Ta, P, Ti, Zr). The extreme depletion in the elements indicates that there is a partially modified mantle source with a subduction. All rocks are enriched in light rare earth elements (LREE) and do not show any Eu anomaly. For this reason, it is generally thought that all rocks (xenolith types and host rocks) were formed from similar magma. The magma rise to shallow magma chamber formed of fractional crystallization from a deep magma chamber before eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 28 May 2019

    The original version of this paper was published with error. Table 1 consists of five sheets but only one was processed, therefore four sheets were missing. Given in this article is the corrected table.

References

  • Aldanmaz E, Köprübaşı N, Gürer ÖF, Kaymakçı N, Gourgaud A (2006) Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76

    Article  Google Scholar 

  • Alıcı P, Temel A, Gourgaud A, Kieffer G, Gündoğdu MN (1998) Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): genesis of enriched alkaline magmas. J Volcanol Geotherm Res 85(1):423–446

    Article  Google Scholar 

  • Ayrton S (1988) The zonation of granitic plutons: the “failed ring-dyke” hypothesis. Schweiz Mineral Petrogr Mitt 68:1–19

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Seirra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Article  Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth Environ Sci Trans Soc 83:145–153

    Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic Province, Italy. Lithos 26:191–221

    Article  Google Scholar 

  • Bedard J (1990) Enclaves from the A-type granite of the Megantic Complex, White mountain magma series: clues to granite magmagenesis. J Geophys Res 95:17797–17819

    Article  Google Scholar 

  • Cantagrel JM, Didier J, Gourgaud A (1984) Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism. Phys Earth Planet Inter 35:63–76

    Article  Google Scholar 

  • Caran Ş (2016) Mineralogy and petrology of leucite ankaratrites with affinities to kamafugites and carbonatites from the Kayıköy area, Isparta, SW Anatolia, Turkey: implications for the influences of carbonatite metasomatism into the parental mantle sources of silica undersaturated potassic magmas. Lithos 256(257):13–25. https://doi.org/10.1016/j.lithos.2016.03.024

    Article  Google Scholar 

  • Castro A, Moreno-Ventas I, De la Rosa JD (1991) H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth-Sci Rev 31:237–253

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Article  Google Scholar 

  • Coban H (2003) New data related to ultrapotassic affinity in the evolution of the Gölcük volcanites (Isparta, SW Turkey). 20th Anniversary Geology Symposium, Suleyman Demirel Uni Isparta-Turkey abstract, pp 117–118.

  • Coban H (2005) New geochronologic, geochemical and isotopic constraints on the evolution of plio-quaternary alkaline volcanism from Isparta district, SW Turkey. International symposium on the geodynamics of eastern Mediterranean: active tectonics of the Aegean region, 15–18 June 2005, Istanbul, Turkey

  • Coban H, Flower MFJ (2006) Mineral phase compositions in silica-undersaturated leucitite lamproites from the Bucak area, Isparta, SW Turkey. Lithos 89:275–299

    Article  Google Scholar 

  • Cox KG, Hawkesworth CJ (1985) Geochemical stratigraphy of the Deccan traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J Petrol 26:355–377

    Article  Google Scholar 

  • D’Lemos RS (1996) Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Islands, UK. Lithos 38:233–257

    Article  Google Scholar 

  • Didier J (1984) The problem of enclaves in granitic rocks: a review of recent ideas on their origin. Proc. Internat. Symp. on ‘Geol. of granites and their metallogenetic relations’. Nanjing Univ, Nanjing, China, pp 137–144

  • Didier J, Barbarin B (1991) Enclaves and granite petrology. Developments in Petrology, vol 13. Elsevier, Amsterdam 625 p

    Google Scholar 

  • Dilek Y, Altunkaynak S (2007) Cenozoic crustal evolution and mantle dynamics of postcollisional magmatism in western Anatolia. Int Geol Rev 49:431–453. https://doi.org/10.2747/0020-6814.49.5.431

    Article  Google Scholar 

  • Dilek Y, Altunkaynak S (2008) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab breakoff, and lithospheric tearing in an orogenic belt. In: van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone, vol 311. Special Publication J Geol Soc Lond, London, pp 213–233. https://doi.org/10.1144/SP311.8.

    Chapter  Google Scholar 

  • Dodge FCW, Kistler RW (1990) Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. J Geophys Res 95:17841–17848

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Elitok Ö, Özgür N, Yılmaz K (2008) Gölcük volkanizmasının (Isparta) jeolojik evrimi, GB Türkiye. 104Y213 nolu Tübitak Projesi. Isparta

  • Elitok Ö, Özgür N, Drüppel K, Dilek Y, Platevoet B, Guillou H, Poisson A, Scaillet S, Satır M, Siebel W, Bardintzeff J-M, Deniel C, Yılmaz K (2010) Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. Int Geol Rev 52(4–6):454–504

    Article  Google Scholar 

  • Fershtater GB, Borodina NS (1977) Petrology of autoliths in granitic rocks. Int Geol Rev 19:458–468

    Article  Google Scholar 

  • Fitton JG, James D, Kempton PD, Ormerod DS, Leeman WP (1988) The role of the lithospheric mantle in the generation of late Cenezoic basic magmas in the Western United States. J Petrol Spec Lithospheric Issue:331–349

  • Frost TP, Mahood GA (1987) Field, chemical, and physical constrains on mafic–felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Görmüş M, Özkul M (1995) Gönen-Atabey (Isparta) ve Ağlasun (Burdur) Arasındaki Bölgenin Stratigrafisi. Süleyman Demirel Üniversitesi, Fen Bil Enst Der 1, pp 43–64, Isparta.

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3253–3274

    Article  Google Scholar 

  • Hassanipak AA, Ghazi AM, Wampler JM (1996) Rare earth element characteristics and K–Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Can J Earth Sci v 33:1534–1542

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1994) Destructive plate magrin magmatism: geochemistry and melt generation. Lithos 33:169–188

    Article  Google Scholar 

  • Hildenbrand A, Platevoet B, Poisson A, Monath F, Nauret F, Guillou H, Lefèvre Ch (1999) The Shoshonitic Volcanic Series of Isparta Triangle, Turkey: Evidence for Fractionation Processes in a Shallow Reservoir and Mantle Source. EUG Strasbourg, Post-collisional Magmatism Symposium, Terra Nova abstract, p 695

  • Ionov D, O’Reilly SY, Griffin WL (1997) Volatile elements and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sazava intrusion, central bohemian pluton, Czech Republic. Lithos 78:67–99

    Article  Google Scholar 

  • Karaman ME (1990) Isparta güneyinin temel jeolojik özellikleri. Türkiye Jeo Kur Bült 33:57–67

    Google Scholar 

  • Karaman ME (2000) Tectono-stratigraphic outline of the Burdur-Isparta area (Western Taurides, Turkey). Türkiye Jeo Kur Bült 43(2):71–81

    Google Scholar 

  • Karaman ME, Meriç E, Tansel İ (1988) Çünür (Isparta) dolaylarında Kretase-Tersiyer geçişi. Akdeniz Üni Isparta Müh Fak Der 4:80–100

    Google Scholar 

  • Kazancı N, Karaman ME (1988) Gölcük (Isparta) Pliyosen volkanoklastik istifinin sedimantolojik özellikleri ve depolanma mekanizmalar. Akdeniz Üni Isparta Müh Fak Der 4:16–35

    Google Scholar 

  • Kumral M, Coban H, Gedikoglu A, Kilinc A (2006) Petrology and geochemistry of augite trachytes and porphyritic trachytes from the Gölcük volcanic region, Isparta, SW Turkey: a case study. J Asian Earth Sci 27(5):707–716

    Article  Google Scholar 

  • Kumral M, Çoban H, Caran Ş (2007) Th, U and LREE-bearing grossular, chromian feriallanite-(Ce) and chromian cerite-(Ce) in skarn xenoliths ejected from the Gölcük maar crater, Isparta, Anatolia, Turkey. Can Mineral 45(5):1115–1129

    Article  Google Scholar 

  • Lacroix A (1893) Les enclaves des roches volcaniques. Protat frères, imprimeurs, p 710

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford 193p

    Google Scholar 

  • Lefèvre C, Bellon H, Poisson A (1983) Présence de leucitites dans le volcanisme Pliocène de la région d’Isparta (Taurides occidentales, Turquie). CR Acad Sci Paris 297(II):367–372

    Google Scholar 

  • Mouillard P (2011) Etude téphrochronologique du bassin de Burdur, Anatolie de l’Ouest, Turquie. Unpublished Master 1 Memoir. Université Paris-Sud Orsay, Orsay 30 pp

    Google Scholar 

  • Nardi LVS, Lima EF (2000) Hybridisation of mafic microgranular enclaves in the Lavras granite complex, southern Brazil. J S Am Earth Sci 13:67–78

    Article  Google Scholar 

  • Nemec W, Kazanci N, Mitchell JG (1998) Pleistocene explosions and pyroclastic currents in west-Central Anatolia. Boreas 27:311–332

    Article  Google Scholar 

  • Nitoi E, Munteanu M, Marincea S, Paraschivoiu V (2002) Magma-enclaves interaction in the East Carpathians subvolcanic zone, Romania: petrogenetic implications. J Volcanol Geotherm Res 118:229–259

    Article  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins: trace element characteristics of lavas from destructive plate boundaries. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publications, Chandigarh, pp 230–249

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Peng ZX, Mahoney J, Hooper P, Harris C, Beane J (1994) A role of lower continental crust in the flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan traps. Geochim Cosmochim Acta 58:267–288

    Article  Google Scholar 

  • Platevoet B, Scaillet S, Guillou H, Blamart D, Nomade S, Massault M, Poisson A, Elitok Ö, Özgür N, Yagmurlu F, Yılmaz K (2008) Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey. Quaternaire 19(2):147–156

    Article  Google Scholar 

  • Platevoet B, Elitok Ö, Guillou H, Bardintzeff JM, Yagmurlu F, Nomade S, Poisson DC, Özgür N (2014) Petrology of quaternary volcanic rocks and related plutonic xenoliths from Gölcük volcano, Isparta Angle, Turkey: origin and evolution of the high-K alkaline series. J Asian Earth Sci 92:53–76

    Article  Google Scholar 

  • Poisson A (1977) Evolution paleogeographique des massifs des Beydağları at du Susuz da. In VI. Coll. On geology Of Aegean Region (İzdar E, Nakoman E) pp 529–553

  • Poisson A (1984) The extension of the Ionian through into southwestern Turkey. In: geological evolution of the eastern Mediterranean (Dixon JE and Robertson AHF eds.) 53-68, special publication. J Geol Soc Lond 17:241–250

    Article  Google Scholar 

  • Poli GE, Tommasini S (1991) Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. J Geophys Res 32:657–666

    Google Scholar 

  • Rajaieh M, Khalili M, Richards I (2010) The significance of mafic microgranular enclaves in the petrogenesis of the Dehno Complex, Sanandaj-Sirjan belt, Iran. J Asian Earth Sci 39:24–36

    Article  Google Scholar 

  • Sarıiz K (1985) Keçiborlu kükürt yataklarının oluşumu ve yörenin jeolojisi. Anadolu Üni Müh Mim Fak Yay Doktora Tezi, p 91

  • Saunders AD, Norry MJ, Tarney J (1988) Origin of MORB and chemically-depleted mantle reservoirs: trace element constrainst. J Petrol Spec Lithosphere Issue:415–445

    Article  Google Scholar 

  • Schmitt AK, Danışık M, Siebel W, Elitok Ö, Chang Y-W, Shen CC (2014) Late Pleistocene zircon ages for intracaldera domes at Gölcük (Isparta, Turkey). J Volcanol Geotherm Res 286:24–29

    Article  Google Scholar 

  • Sen P, Temel A, Sen E, Gourgaud A, Kieffer G (2008) The origin of Gölcük volcanism (Isparta-SW Türkey): evidence from mantle xenoliths. 61st Turkish geological congress, March 24–28, 2008, abstract program.

    Google Scholar 

  • Silva MMVG, Neiva AMR, Whitehouse MJ (2000) Geochemistry of enclaves and host granites from the Nelas area, Central Portugal. Lithos 50:153–170

    Article  Google Scholar 

  • Sollas JW (1894) On the volcanic district of Carlingford and Slieve Gullion, part I. on the relation of the granite to the gabbro of Barnavave, Carlingford. Trans R Ir Acad 30:477–512

    Google Scholar 

  • Srogi L, Lutz TM (1990) Three-dimensional morphologies of metasedimentary and mafic enclaves from Ascutney Moutain, Vermont. J Geophys Res 95:17829–17840

    Article  Google Scholar 

  • Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. J Geol Soc, London, pp 313–345 (Special Publication)

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford 312 pp.

    Google Scholar 

  • Thompson RN, Hendry GL, Parry SL (1984) An assesment of the relative roles of a crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc Lond A 310:549–590

    Article  Google Scholar 

  • Vernon RH (1983) Restite, xenoliths and microgranitoid enclaves in granites. J Proc R Soc NSW 116:77–103

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granite-globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439

    Article  Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res 95:17849–17859

    Article  Google Scholar 

  • Vernon RH, Etheridge MA, Wall VJ (1988) Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56(165):186

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Article  Google Scholar 

  • White AJR, Chappell BW, Wyborn D (1999) Application of the restite model to the Deddick granodiorite and its enclaves-a reinterpretation of the observations and data of Maas et al. J Petrol 40:413–421

    Article  Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London 466pp

    Book  Google Scholar 

  • Wilson M (2007) Igneous Petrogenesis. Springer Verlag, Berlin 466 p

    Google Scholar 

  • Yılmaz K (2010) Origin of anorogenic ‘lamproite-like’ potassic lavas from the Denizli region in Western Anatolia Extensional Province, Turkey. Mineral Petrol 99(3–4):219–223

    Article  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Fund of Süleyman Demirel University (Project no. 3189-YL1-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Yılmaz.

Additional information

This article is part of the Topical Collection on Geo-Resources-Earth-Environmental Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, K. Geochemistry of ultramafic, mafic, and felsic xenoliths from the Gölcük (Isparta, SW Turkey) alkali rocks: genetic relationship with arc magmas. Arab J Geosci 12, 306 (2019). https://doi.org/10.1007/s12517-019-4461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4461-6

Keywords

Navigation