Skip to main content
Log in

Neotectonic structures imaged by seismic velocity along the Isparta Angle

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Isparta Angle (IA) is formed as a morphotectonic pattern and located in the north of the Antalya Gulf. It is a seismotectonically very active zone as in the Eastern Mediterranean Region. The shape of Isparta Angle is a wedge-like with flanks oriented NE–SW in the west and NW–SE in the east rather than compressional E–W-oriented structures preceding its present shape. It results from the clockwise and anti-clockwise rotation of the Anatolian Plate from the Early Paleocene to the Early Pliocene. In this study, we determined the neotectonic pattern of the IA by using arrival time data of P and S waves. We assessed the 3-D tomographic images from the data of local earthquakes. The tomographic results verified the major tectonic structures and discontinuities in the studied area. The results have revealed the young structural heterogeneities related to the seismotectonic zones. While the higher Vp and Vs distributions are determined in the shallow levels of the earth, low-velocity perturbations are extensively distributed at deeper levels of the crust. The seismotectonic activity, seen along heterogeneous zones, denotes the high-velocity perturbation and is related to the pre-existing faults. The results of checkerboard tests showed that the anomalies are reliable down to approximately 40 km depth. From the middle to the lower crust, the low-velocity zones are related to the geophysical and geological evidence in the Fethiye–Burdur Fault Zone (FBFZ) and the existence of mantle material is consistent with the partial melt in the upper mantle. Furthermore, the present study revealed the new active zones from 3-D tomographic results: the NW-trending Yalvaç, NE-trending Gelendost, and approximately N–S-trending Eğirdir–Kovada grabens existing in the northern core of IA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdewahed, M. F., Zhao, D. (2006). Tomotools, seismic tomography tools in seismology V1.0, Geodynamics Research Center, Ehime University, Japan

  • Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S (2010) On the geodynamics of the Aegean rift. Tectonophysics 488:7–21. https://doi.org/10.1016/j.tecto.2009.07.025

    Article  Google Scholar 

  • Akyol N, Zhu L, Mitchell B, Sözbilir H, Kekovalı K (2006) Crustal structure and local seismicity in western Anatolia. Geophys J Int 166(3):1259–1269

    Google Scholar 

  • Alçiçek MC, Kazancı N, Özkul M (2005) Multiple rifting pulses and sedimentation pattern in the Çameli Basin, southwestern Anatolia, Turkey. Sediment Jeology 173:409–431

    Google Scholar 

  • Aldanmaz E, Köprübaşı N, Gürer ÖF, Kaymakçı N, Gourgaud A (2006) Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76

    Google Scholar 

  • Altuncu-Poyraz S (2009) Isparta Büklümü’nü oluşturan Tektonik Yapıların Sismolojik Yöntemlerle Araştırılması. İstanbul Universitesi, Fenbilimleri Enstitüsü, DoktoraTezi (in Turkish with English abstract)

    Google Scholar 

  • Ambraseys NN (2001) Reassessment of earthquakes 1900–1999 in the Eastern Mediterranean and Middle East. Geophys J Int 145:471–485

    Google Scholar 

  • Barka AA, Reilinger RE, Şaroğlu F, Şengör AMC (1995). Isparta Angle: its importance in the neotectonics of the Eastern Mediterrinean Region. In: Pişkin Ö, Ergün M,Savaşçın MY, Tarcan Ş(eds), International Earth Sciences Colloquium on the Aegean Region Proceedings 3–18

  • Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184(3):1037–1057

    Google Scholar 

  • Bocchini GM, Brüstle A, Becker D, Meier T, van Keken PE, Ruscic M, Papadopoulos GA, Rische M, Friederich W (2018) Tearing, segmentation, and backstepping of subduction in the Aegean: new insights from seismicity. Tectonophysics 734–735:96–118

    Google Scholar 

  • Boray A, Şaroğlu F, Emre Ö (1985) Isparta büklümünün kuzey kesiminde D-B daralma için bazı veriler. Jeoloji Mühendisliği 23:9–20 (in Turkish with English abstract)

    Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodyn Acta 14:3–30

    Google Scholar 

  • Bozkurt E, Sözbilir H (2004) Tectonic evolution of the Gediz graben: field evidence for an episodic, two-stage extension in western Turkey. Geol Mag 141:63–79

    Google Scholar 

  • Burdick LJ, Langston CA (1977) Modelling crust-structure through the use of converted phases in teleseismic body-wave-forms. Bull Seismol Soc Am 67:677–691

    Google Scholar 

  • Büyükaşıkoğlu S (1980) Sismolojik verilere gore Doğu Akdeniz’in kuzeyinde ve güneydoğu Anadolu’da Avrasya-Afrika levha sınırının özellikleri. DAEB 29:58–74

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Google Scholar 

  • Dilek Y, Altunkaynak Ş (2009). Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in aorogenic belt, Geological Society, Special Publications, London

    Google Scholar 

  • Dilek Y, Rowland J (1993) Evolution of conjugate passive margin pair in Mesozoic southern Turkey. Tectonics 12(4):954–970

    Google Scholar 

  • Doglioni C, Agostini S, Crespi M, Innocenti F, Manetti P, Riguzzi F, Savasçin Y (2002) On the extension in western Anatolia and the Aegean Sea. J Virtual Explor 7:167–181

    Google Scholar 

  • Dolmaz MN, Ustaömer T, Hisarlı ZM, Orbay N (2005) Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planet Spa 57(5):373–383

    Google Scholar 

  • Erkül F, Helvacı C, Sözbilir H (2005) Stratigraphy and geochronology of the Early Miocene volcanic units in the Bigadiç Borate Basin, western Turkey. Turk J Earth Sci 14:227–253

    Google Scholar 

  • Erduran M, Çakır Ö, Tezel T, Şahin Ş, ve Alptekin Ö (2007) Anatolian surface wave evaluated at GEOFON Station ISP Isparta, Turkey. Tectonophysics 434(2007):39–54

    Google Scholar 

  • Faccenda M, Capitanio FA (2012) Development of mantle seismic anisotropy during subduction-induced 3-D flow. Geophys Res Lett 39:L11305. https://doi.org/10.11029/12012GL051988

    Article  Google Scholar 

  • Faccenna, C., Funiciello, F., Civetta, L., D’Antonio, M., Moroni, M., Piromallo, C., (2007). Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M (Eds.), Cenozoic volcanism in the Mediterranean area, 418, 153–169. doi:https://doi.org/10.1130/2007.2418(1108)

  • Flecker R, Poisson A, Robertson AHF (2005) Facies and palaeogeographic evidence for the Miocene evolution of the Isparta Angle in its regional Eastern Mediterranean context. Sediment Geol 173:277–314

    Google Scholar 

  • Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K (2003) Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments. J Geophys Res 108(B4):2207. https://doi.org/10.1029/2001JB000896

    Article  Google Scholar 

  • Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A, Bui HA (2006) Mapping mantle flow during retreating subduction: laboratory models analyzed by feature tracking. J Geophys Res 111:B03402. https://doi.org/10.01029/02005JB003792

    Article  Google Scholar 

  • Glover CP, Robertson AHF (1998a) Role of regional extension and uplift in the Plio-Pleistocene evolution of the Aksu Basin, SW Turkey. Geol Soc London 155:365–387

    Google Scholar 

  • Glover CP, Robertson AHF (1998b) Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298:103–132

    Google Scholar 

  • Gessner K, Gallardo LA, Markwitz V, Ring U, Thomson ST (2013) What caused the denudation of the Menderes massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res 24:243–274. https://doi.org/10.1016/j.gr.2013.1001.1005

    Article  Google Scholar 

  • Govers R, Fichtner A (2016) Signature of slab fragmentation beneath Anatolia from full waveform tomography. Earth Planet Sci Lett 450:10–19

    Google Scholar 

  • Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523

    Google Scholar 

  • Guillaume B, Husson L, Funiciello F, Faccenna C (2013) The dynamics of laterally variable subductions: laboratory models applied to the Hellenides. Solid Earth 4:179–200. https://doi.org/10.5194/se-5194-5179-2013

    Article  Google Scholar 

  • Halpaap F, Rondenay S, Ottemöller L (2018) Seismicity, deformation and metamorphism in the western Hellenic subduction zone-new constraints from tomography. J Geophys Res 123:3000–3026. https://doi.org/10.1002/2017JB015154

    Article  Google Scholar 

  • Hauksson E, Haase JS (1997) Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles Basin and central Transverse Ranges, California. J Geophys Res 102:5423–5433

    Google Scholar 

  • Inoue H, Fukao Y, Tanabe K, Ogata Y (1990) Whole mantle P wave travel time tomography. Phys Earth Planet Inter 59:294–328

    Google Scholar 

  • Jackson JA, McKenzie D (1984) Active tectonics of the Alpine–Himalayan belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264

    Google Scholar 

  • Jolivet L, Faccenna C, Piromallo C (2009) From mantle to crust: stretching the Mediterranean. Earth Planet Sci Lett 285(1):198–209

    Google Scholar 

  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L, Lacombe O, Lecomte E, Burov E, Denèle Y, Brun J-P, Philippon M, Paul A, Salaün G, Karabulut H, Piromallo C, Monié P, Gueydan F, Okay AI, Oberhänsli R, Pourteau A, Augier R, Gadenne L, Driussi O (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597:1–33

    Google Scholar 

  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Greseman B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of a slab tear below the Aegean. Tectonophysics 659:166–182

    Google Scholar 

  • Jonathan RD, Biryol CB, Beck SL, Zandt G, Ward KM (2015) Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophys J Int 202:261–276

    Google Scholar 

  • Julia J, Ammon CJ, Hermann RB, Correig AM (2000) Joint inversion of receiver functions and surface-wave dispersion observations. Geophys J Int 143:99–112

    Google Scholar 

  • Kalafat D (1988) Güneybatı Anadolu ve Yakın Çevresinin Depremselliği, Aktif Tektoniği. Deprem Araştırma Bülteni 63:5–98 (in Turkish)

    Google Scholar 

  • Kalafat D, Gürbüz C, Üçer SB (1987) Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması. Deprem Araştırma Bülteni 59:43–64 (in Turkish)

    Google Scholar 

  • Kalyoncuoğlu ÜY, Özer MF (2003) Determination of the crustal structure beneath the Isparta seismograph station. Dokuz Eylul University Bull Sci Eng 5:11–127

    Google Scholar 

  • Kalyoncuoglu UY, Elitok Ö, Dolmaz MN, Anadolu NC (2011) Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. J Geodyn 52:70–82

    Google Scholar 

  • Kahraman, M. (2008). Crustal structure of the Isparta Angle and surrounding regions using P-receiver function analysis. Boğaziçi Üniversitesi ve KRDAE Yüksek Lisans Tezi

  • Karaman, M.E. (2010). The Isparta Angle and its reletationship with Aegean-Cyprus Tectonic arcs, SW Turkey. XIX Congress of the Carpathian Balkan Geological Association Thessaloniki, Greece, September 23–26

  • Kayal JR, Zhao D, Mishra OP, De R, Singh OP (2002) The 2001 Bhuj earthquake: tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophys Res Lett 29(24):2152–25-4. https://doi.org/10.1029/2002GL015177

    Article  Google Scholar 

  • Kelling G, Robertson AHF, Buchem FV (2005) Cenozoic sedimentary basins of southern Turkey: an introduction. Sediment Geol 173:1–13

    Google Scholar 

  • Koçyiğit A (1983) Hoyran gölü (Isparta Büklümü) dolayının tektoniği [Tectonics of Lake Hoyran (Isparta Angle) area]. Bull Geol Soc Turk 26:1–10 (in Turkish with English abstract)

    Google Scholar 

  • Koçyiğit A, Özacar A (2003) Extensional neotectonic regime through the NE edge of the outer Isparta Angle, SW Turkey: new field and seismic data. Turk J Earth Sci 12:67–90

    Google Scholar 

  • Koçyiğit A (2005) Denzili graben-Horst system and the eastern limit of the west Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodin Acta 18:167–208

    Google Scholar 

  • Koçyiğit A, Deveci Ş (2007) A N-S-trending active extensional structure, the Şuhut (Afyon) graben: commencement age of the extensional neotectonic period in the Isparta Angle, SW Turkey. Turk J Earth Sci 16:391–416

    Google Scholar 

  • Lee, W.H.K., Lahr, J.C. (1972). HYP071: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, open file report, U. S. Geological Survey, 100.

  • Legendre CP, Meier T, Lebedev S, Friederich W, Viereck-Götte L (2012) A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophys J Int 191(1):282–304

    Google Scholar 

  • Lei J, Zhao D (2005) P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397:281–295

    Google Scholar 

  • Moresi L, Betts PG, Miller MS, Cayley RA (2014) Dynamics of continental accretion. Nature 508:245–248. https://doi.org/10.1038/nature13033

    Article  Google Scholar 

  • Owens TJ, Zandt G, Taylor SR (1984) Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: a detailed analysis of broadband teleseismic P waveforms. J Geophys Res 89:7783–7795

    Google Scholar 

  • Özalaybey S, Savage MK, Sheehan AF, Louie JN, Brune JN (1997) Shear-wave velocity structure in the northern basin and range from the combined analysis of receiver functions and surface wave. Bull Seismol Soc Am 87:183–199

    Google Scholar 

  • Özbakır AD, Şengör AMC, Wortel MJR, Govers R (2013) The Pliny–Strabo trench region: a large shear zone resulting from slab tearing. Earth Planet Sci Lett 375:188–195

    Google Scholar 

  • Papanikolaou DJ, Royden LH, (2007). Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—or what happened at Corinth? Tectonics, 26 (5)

  • Paul A, Karabulut H, Mutlu AK, Salaün G (2014) A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth Planet Sci Lett 389:14–22

    Google Scholar 

  • Pearce FD, Rondenay S, Sachpazi M, Charalampakis M, Royden LH, (2012). Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction zone. J Geophys Res Solid Earth, 117 (B7)

    Google Scholar 

  • Pe-Piper, G., Piper, D.J.W., (2006). Unique features of the Cenozoic igneous rocks of Greece. In: Dilek, Y., Pavlides, S. (Eds.), Geological Society of America. Post collisional tectonics and magmatism in the Mediterranean region and Asia, 409, 259–282. doi:https://doi.org/10.1130/2006.2409(1114)

  • Phinney RA (1964) Structure of earths crust from spectral behavior of long-period body waves. J Geophys Res 69:2997–3017

    Google Scholar 

  • Piper J, Gürsoy H, Tatar O, İşseven T, Koçyiğit A (2002) Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, Southern Turkey. Geol J 37:317–336

    Google Scholar 

  • Poisson A (1977) Researches geologiques dans les Taurides Occidentales (Turquie): thesed’etat. Univ. de Paris-Sud, Orsay, p 795

    Google Scholar 

  • Poisson A, Wernli R, Sagular EK, Temiz H (2003a) New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geol J 38:311–327

    Google Scholar 

  • Poisson A, Yağmurlu F, Bozcu M, Sentürk M (2003b) New insight on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geol J 38:357–282

    Google Scholar 

  • Price SP, Scott B (1994) Fault-block rotations at the edge of a zone of continental extension: southwest Turkey. J Struct Geol 16:381–392

    Google Scholar 

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res Solid Earth 108(B2):2065

    Google Scholar 

  • Piromallo C, Becker TW, Funiciello F, Faccenna C (2006) Three-dimensional instantaneous mantle flow induced by subduction. J Geophys Res 33:L08304. https://doi.org/10.1029/2005GL025390

    Article  Google Scholar 

  • Robertson AHF, Woodcock NH, (1980). Tectonic setting of the Troodos massif in the East Mediterranean. In: Panayiotou A (Ed.), Ophiolites. Proceedings of the international symposium, Cyprus, 1979. Cyprus Geological Survey Department, Ministry of Agriculture and Natural Resources, pp. 36–49

  • Robertson AHF, Dixon JE (1984) Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geol Soc Lond, Spec Publ 17:1–74

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:289–343

    Google Scholar 

  • Robertson AHF, Poisson A, Akıncı O (2003) Developments in research concerning Mesozoic–Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey. Geol J 38:195–234

    Google Scholar 

  • Robertson AHF, (1993). Mesozoic–Tertiary sedimentary and tectonic evolution of Neotethyan carbonate platforms, margins and small ocean basins in the Antalya Complex of southwest Turkey. In: Frostick LE, Steel RJ (Eds.), Tectonic controls and signatures in sedimentary successions, vol. 20. Special publication of the International Association of Sedimentologists, Oxford, Blackwell, pp. 415–465

    Google Scholar 

  • Robertson AHF (2000) Mesozoic–Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in Southern Turkey. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geological Society Special Publication, London, pp 97–138

    Google Scholar 

  • Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Region. Lithos 65:1–67

    Google Scholar 

  • Robertson AHF (2007). Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions, vol. 282. Geological Society, London, Special Publications, pp. 325–388

    Google Scholar 

  • Rotstein Y, Kafka AL (1982) Seismotectonics of the southern boundary of Anatolia, Eastern Mediterranean Region: subduction, collision, and arc jumping. J Geophys Res 87(B9):7694–7706

    Google Scholar 

  • Royden LH, Papanikolaou DJ, (2011). Slab segmentation and Late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst, 12 (3)

    Google Scholar 

  • Salah MK, Şahin Ş, Destici C (2007) Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes. J Seismol 11:415–432. https://doi.org/10.1007/s10950-007-9062-2

    Article  Google Scholar 

  • Salah MK, Şahin Ş, Aydın U (2011) Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia. J Asian Earth Sci 40:746–761

    Google Scholar 

  • Salah MK, Zhao D (2003) 3-D seismic structure of Kii Peninsula in Southwest Japan: evidence for slab dehydration in the fore arc. Tectonophysics 364:191–213

    Google Scholar 

  • Sandvol E, Seber D, Calvert A, Barazangi M (1998) Grids earch modeling of receiver functions: implications for crustal structure in Middle East and North Africa. J Geophys Res 103:899–917

    Google Scholar 

  • Schildgen TF, Yıldırım C, Cosentino D, Strecker MR (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the central and eastern Anatolian plateaus. Earth Sci Rev 128:147–168. https://doi.org/10.1016/j.earscirev.2013.1011.1006

    Article  Google Scholar 

  • Shelly D, Beroza GC, Zhang H, Thurber C, Ide S (2006) High resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. J Geophy Research 111:B06311. https://doi.org/10.1029/2005JB004081

    Article  Google Scholar 

  • Sternai P, Jolivet L, Menant A, Gerya T (2014) Driving the upper plate surface deformation by slab rollback and mantle flow. Earth Planet Sci Lett 405:110–118

    Google Scholar 

  • Suckale J, Rondenay S, Sachpazi M, Charalampakis M, Hosa A, Royden LH (2009) High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophys J Int 178(2):775–791

    Google Scholar 

  • Şengör AMC, (1980). Türkiye’nin neotektoniğinin esasları, Türkiye jeoloji Kurumu, Konferans serisi 2

  • Şengör AMC, Yılmaz Y, Sungurlu O, (1985). Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleotethys. In: Robertson AF, Dixon JE (eds) The geological evolution of the Eastern Mediterranean, vol 17, specpubl. Geological Society, London, pp 77–112

    Google Scholar 

  • Şentürk M, Yağmurlu F (2003) Acigöl ve Burdur Gölü arasındaki bölgenin jeolojik ve sismotektonik özellikleri. SDU, Fen Bilimleri Dergisi 7:11–24 (in Tukish with English abstract)

    Google Scholar 

  • Taymaz T, Jackson J, Mckenzie D (1991) Active tectonics of thecentral Aegean Sea. Geophys J Int 106:433–490

    Google Scholar 

  • Tokçaer M, Agostini S, Savaşçın MY (2005) Geotectonic setting and origin of the youngest Kula volcanics (western Anatolia), with a new emplacement model. Turkish Journal of Earth Sciences (Turkish J Earth Sci) 14:145–166

    Google Scholar 

  • Um J, Thurber CH (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972–986

    Google Scholar 

  • Uysal S, Dumont JF, Poisson A, (1980). Western Taurus platforms. Min. Res. Explor. Inst. of Turkey (MTA) Report, No. 80, 1—13

  • Üner S, Özsayın E, Kutluay A, Dirik K (2015) Poly phase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey). Geologica Carpatica 66(2):157–169. https://doi.org/10.1515/geoca-2015-0017

    Article  Google Scholar 

  • Waldron JWF (1984) Evolution of carbonate platforms on a margin of the Neotethys Ocean: Isparta Angle, south-western Turkey. Eclogae Geol Helv 77:553–581

    Google Scholar 

  • van Hinsbergen DJJ, Kaymakci N, Spakman W, Torsvik TH (2010) Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth Planet Sci Lett 297(3):674–686

    Google Scholar 

  • van Hinsbergen DJJ, Schmid SM (2012) Map-view restoration of Aegean–West Anatolian accretion and extension since the Eocene. Tectonics 31:TC5005

    Google Scholar 

  • Wortel MJR, Spakman W (1992) Structure and dynamic of subducted lithosphere in the Mediterranean. Proc Kon Ned Akad Wet 95:325–347

    Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290(5498):1910–1917

    Google Scholar 

  • Yağmurlu F (1991) Yalvaç-Yarıkkaya Neojen havzasının stratigrafisi ve depolanma ortamı [Stratigraphy and depositional setting of the Yalvaç-Yarıkkaya Neogene basin]. Bull Geol Soc Turk 34:9–19 (in Turkish with English abstract)

    Google Scholar 

  • Yelkenci S (2006) The crustal structure of the central Anatolia using receiver function analysis. DoktoraTezi, Boğaziçi Üniversitesi

    Google Scholar 

  • Yılmaz Y, Genc SC, Gurer OF, Bozcu M, Yılmaz K, Karacık Z, Altunkaynak S, Elmas A (2000) When did the western Anatolian grabens begin to develop? In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonic sand magmatism in Turkey and the surrounding area, vol 173, special publications. Geological Society, London, pp 353–384

    Google Scholar 

  • Zhao D, Hasegawa A, Horiuchi S (1992) Tomographic imaging of P- and S-wave velocity structure beneath north eastern Japan. J Geophys Res 97:19909–19928

    Google Scholar 

  • Zhao D, Negishi H (1998) The 1995 Kobe earthquake: seismic image of the source zone and its implications for the rupture nucleation. J Geophys Res 103:9967–9986

    Google Scholar 

  • Zhao D, Ochi F, Hasegawa A, Yamamoto A (2000) Evidence for the location and cause of large crustal earthquakes in Japan. J Geophys Res 105:13579–13594

    Google Scholar 

  • Zhao D, Wang K, Rogers G, Peacock S (2001) Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth Planets Space 53:285–293

    Google Scholar 

  • Zhao D, Mishra OP, Sanda R (2002) Influence of fluids and magma on earthquakes: seismological evidence. Phys Earth Planet Inter 132:249–267

    Google Scholar 

Download references

Acknowledgments

We thank Ayşe Iren for his help in Suleyman Demirel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şakir Şahin.

Additional information

Handling editor: Lun Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, Ş., Abubakar, I., Özçelik, M. et al. Neotectonic structures imaged by seismic velocity along the Isparta Angle. Arab J Geosci 12, 230 (2019). https://doi.org/10.1007/s12517-019-4377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4377-1

Keywords

Navigation