Skip to main content

Advertisement

Log in

Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka BP using speleothem δ18O records from the Central Lesser Himalaya, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study documents the monsoon precipitation variability spanned ~ 2500 years, between 4.0 and 1.6 ka BP (before 1950 AD), from the Central Lesser Himalaya, India, using δ18O measurements of Tityana cave stalagmite (hereafter referred as TC1). At present, the cave receives precipitation from both Indian Summer Monsoon (ISM) and Western Disturbances (WDs). The δ18O variation between − 8.04 and − 10.46‰ through growth axis of the TC1 and five 14C AMS dates (due to large age uncertainty by 230Th/U method) have allowed us to identify the mid to late Holocene multi-decadal to centennial scale climatic oscillations. The higher δ18O values indicate the weakening of the monsoon precipitation, while the lighter values represent the stronger monsoon precipitation strength. Based on the fluctuations in δ18O values, three distinct phases of the precipitation variability are distinguished as, declined/decreased precipitation between ~ 4.0 and 3.4 ka BP with peak aridity around ~ 3.4 ka BP, followed by slightly improved conditions from ~ 3.4 to ~ 2.7 ka BP. Subsequently, the climate was reduced from ~ 2.7 ka BP onwards until the end of stalagmite growth, around ~ 1.6 ka BP with spikes of two major drought events centred at ~ 1.9 and ~ 1.6 ka BP. In general, the droughts, centred at ~ 3.4, ~ 1.9 and ~ 1.6 ka BP, are characterized by abrupt drop (from − 8.12 to − 8.04‰) in the δ18O values and point to the weakening of the monsoon. One of the major drought events at ~ 3.4 ka BP can be correlated with the collapse of the Indus valley civilization in the NW India. A close correspondence of the TC1 data set with other WDs influenced regimes likely indicates a relative impact of mid-latitude WDs after transition of the mid-late Holocene around 3.5–3.4 ka BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad SM, Anil Babu G, Padmakumari VM, Waseem R (2008) Surface and deep water changes in the northeast Indian Ocean during the last 60 ka inferred from carbon and oxygen isotopes of planktonic and benthic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 262:182–188

    Article  Google Scholar 

  • Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet Sci Lett 166:85–95

    Article  Google Scholar 

  • Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67(17):3181–3199

    Article  Google Scholar 

  • Benn DI, Owen LA (1998) The role of the Indian Summer Monsoon and the mid-latitude westerlies in Himalaya glaciation: review and speculative discussion. Journal of Geological Society, London 155:353–363

    Article  Google Scholar 

  • Bhargava ON, Frank W, Bertle R (2011) Late Cambrian deformation in the Lesser Himalaya. J Asian Earth Sci 40:201–212

    Article  Google Scholar 

  • Blyth AJ, Hua Q, Smith A, Frisia S, Borsato A, Hellstrom J (2017) Exploring the dating of “dirty” speleothems and cave sinters using radiocarbon dating of preserved organic matter. Quat Geochronol 39:92–98

    Article  Google Scholar 

  • Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–430

    Article  Google Scholar 

  • Bronk Ramsey C (2001) Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–363

    Article  Google Scholar 

  • Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Burns SJ, Matter A, Frank N, Mangini A (1998) Speleothem-based paleoclimate record from northern Oman. Geology 26(6):499–502

    Article  Google Scholar 

  • Burns SJ, Fleitmann D, Matter A, Neff U, Mangini A (2001) Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29:623–626

    Article  Google Scholar 

  • Burns SJ, Fleitmann D, Matter A, Kramers J, Al-Subbary AA (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 288:847–850

    Google Scholar 

  • Chauhan OS (2003) Past 20,000-year history of Himalayan aridity: evidence from oxygen isotope records in the Bay of Bengal. Curr Sci 84(1):190–193

    Google Scholar 

  • Chauhan MS, Sharma C (1996) Pollen analysis of mid-Holocene sediments from Kumaon Himalaya. Geol Surv India Spec Publ 21:257–269

    Google Scholar 

  • Chauhan MS, Sharma C, Singh IB, Sharma S (2004) Proxy records of late Holocene vegetation and climate changes from Basaha Jheel, Central Ganga Plain. J Palaeontol Soc India 49:27–34

    Google Scholar 

  • Cheng H, Edwards RL, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C (2012) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectroscopy. Earth Planet Sci Lett 371-372:82–91

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Demske D, Tarasov PE, Leipe C, Kotlia BS, Joshi LM, Long T (2016) Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years. The Holocene:1–15. doi:10.1177/0959683616650267

  • Denniston RF, Gonzalez LA, Asmerom Y, Sharma RH, Reagan MK (2000) Speleothem evidence for changes in Indian Summer Monsoon precipitation over the last 2300 years. Quat Res 53:196–202

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014) Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology 42(4):339–342

    Article  Google Scholar 

  • Dorale J, Liu Z (2009) Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies 71(1):73–80

    Google Scholar 

  • Duan W, Kotlia BS, Tan M (2013) Mineral composition and structure of the stalagmite laminae from Chulerasim cave, Indian Himalaya and the significance for palaeoclimatic reconstruction. Quat Int 298:93–97

    Article  Google Scholar 

  • Durand N, Hamelin B, Deschamps P, Gunnell Y, Curmi P (2016) Systematics of U-Th disequilibrium in calcrete profiles: lessons from southwest India. Chem Geol 446:54–69

    Article  Google Scholar 

  • DyKoski C, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, Qing JM, An ZS, Revenaugh J (2005) A high resolution absolute dated Holocene and deglacial Asian monsoon record from Dongge cave, China. Earth Planet Sci Lett 233:71–86

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat Sci Rev 23:935–945

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Garnett ER, Gilmour MA, Rowe PJ, Andrews JE, Preece RC (2004) 230Th/234U dating of Holocene tufas: possibilities and problems. Quat Sci Rev 23:947–958

    Article  Google Scholar 

  • Gasse F, Van Campo E (1994) Abrupt post glacial climate events in west Asia and North Africa monsoon domains. Earth Planet Sci Lett 126:435–456

    Article  Google Scholar 

  • Genty D, Massault M (1997) Bomb 14C recorded in laminated speleothems—calculation of dead carbon proportion. Radiocarbon 39(1):33–48

    Article  Google Scholar 

  • Genty D, Baker A, Massault M, Proctor C, Gilmour M, Pons-Branchu E, Hamelin B (2001) Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim Cosmochim Acta 65(20):3443–3457

    Article  Google Scholar 

  • Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chemical Geology 181:147–167

    Article  Google Scholar 

  • Goslar T, Hercman H, Pazdur A (2000) Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon 42(3):403–414

    Article  Google Scholar 

  • Gupta A (2008) Late Quaternary vegetation and climate from temperate zone of the Kumaun Himalaya, India (with remarks on neotectonic disturbance). Acta Palaeobotanica 48(2):325–333

    Google Scholar 

  • Gupta AK, Mohan K, Das M, Singh RK (2013) Solar forcing of the Indian summer monsoon variability during the Ållerød period. Sci Report 3:2753. doi:10.1038/srep02753

    Article  Google Scholar 

  • Hassan FA, Stucki BR (1987) Nile floods and climatic change. In: Rampino MR, Sanders JE, Newman WS, Konigsson LK (eds) Climate: history, periodicity and predictability. Van Nostrand Reinhold, New York, pp 37–46

    Google Scholar 

  • Hendy CH (1971) The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta 35:801–824

    Article  Google Scholar 

  • Hercman H, Goslar T (2002) Uranium-series and radiocarbon dating of speleothems—methods and limitations. Acta Geol Pol 52(1):35–41

    Google Scholar 

  • Hren MT, Bookhagen B, Blisniuk PM, Booth AL, Chamberlain CP (2009) δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett 288:20–32

    Article  Google Scholar 

  • Hua Q, McDonald J, Redwood D, Drysdale R, Lee S, Fallon S, Hellstrom J (2012) Robust chronological reconstruction for young speleothems using radiocarbon. Quat Geochronol 14:67–80

    Article  Google Scholar 

  • Indian disaster report (2013) (http://nidm.gov.in/PDF/pubs/India%20Disaster%20Report % 202013.pdf)

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of U-235 and U-238. Physical Reviews 4:1889–1906

    Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2009) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn 32:1139–1153

    Article  Google Scholar 

  • Joshi LM, Kotlia BS (2015) Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quat Int 371:219–231

    Article  Google Scholar 

  • Kar R, Ranhotra PS, Bhattacharyya A, Sekar B (2002) Vegetation vis-a-vis climate and glacial fluctuations of the Gangotri glacier since the last 2000 years. Curr Sci 82(3):347–351

    Google Scholar 

  • Kotlia BS, Joshi LM (2013) Late Holocene climatic changes in Garhwal Himalaya. Curr Sci 104(7):911–919

    Google Scholar 

  • Kotlia BS, Bhalla MS, Sharma C, Rajagopalan G, Ramesh R, Chauhan MS, Mathur PD, Bhandari S, Chacko ST (1997) Palaeoclimatic conditions in the upper Pleistocene and Holocene Bhimtal–Naukuchiatal lake basin in south central Kumaun, North India. Palaeogeogr Palaeoclimatol Palaeoecol 130:307–322

    Article  Google Scholar 

  • Kotlia BS, Sanwal J, Phartiyal B, Joshi LM, Trivedi A, Sharma C (2010) Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as deduced from multi-proxy studies. Quat Int 213:44–55

    Article  Google Scholar 

  • Kotlia BS, Ahmad SM, Zhao J-X, Raza W, Collerson KD, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 y old stalagmite record. Quat Int 263:129–138

    Article  Google Scholar 

  • Kotlia BS, Singh AK, Joshi LM, Dhaila BS (2015) Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: impact of Indian Summer Monsoon (ISM) and Westerlies. Quat Int 371:244–253

    Article  Google Scholar 

  • Kotlia BS, Singh AK, Zhao J-X, Duan W, Tan M, Sharma AK, Raza W (2017) Stalagmite based high resolution precipitation variability for past four centuries in the Indian Central Himalaya: Chulerasim cave re-visited and data re-interpretation. Quat Int 444:35–34

    Article  Google Scholar 

  • Kumar B, Rai SP, Kumar US, Verma SK, Garg P, Kumar SVV, Jaiswal R, Purendra BK, Kumar SR, Pande NG (2010) Isotopic characteristics of Indian precipitation. Water Resour Res 46:W12548. doi:10.1029/2009WR008532

    Article  Google Scholar 

  • Laskar AH, Raghav S, Yadava MG, Jani RA, Narayana AC, Ramesh R (2011) Potential of stable carbon and oxygen isotope variations of speleothems from Andaman Islands, India, for paleomonsoon reconstruction. J Geol Res. doi:10.1155/2011/272971

  • Laskar AH, Yadava MG, Ramesh R, Polyak VJ, Asmerom Y (2013) A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochemistry Geophysics Geosystems 14(9):3555–3566

    Article  Google Scholar 

  • Lechleitner FA, Fohlmeister J, McIntyre C, Baldini LM, Jamieson RA, Hercman H, Gąsiorowski M, Pawlak J, Stefaniak K, Socha P (2016) A novel approach for construction of radiocarbon-based chronologies for speleothems. Quat Geochronol 35:54–66

    Article  Google Scholar 

  • Leipe C, Demske D, Tarasov PE and HIMPAC Project Members (2014) A Holocene pollen record from the northwestern Himalayan lake TsoMoriri: implications for palaeoclimatic and archaeological research. Quat Int 348:93–112

    Article  Google Scholar 

  • Li H, Ku T-L, Chen W, Jiao W, Zhao S, Chen T, Li T (1996) Isotope studies of Shihua Cave, Beijing (II): radiocarbon dating and age correction of stalagmite. Seismology and Geology 18(4):329–338

    Google Scholar 

  • Liang F, Brook GA, Kotlia BS, Railsback LB, Hardt B, Cheng H, Edwards RL, Kandasamy S (2015) Panigarh cave stalagmite evidence of climate change in the Indian Central Himalaya since AD 1256: monsoon breaks and winter southern jet depressions. Quat Sci Rev 124:145–161

    Article  Google Scholar 

  • Lone MA, Ahmad SM, Dung NC, Shen CC, Raza W, Kumar A (2014) Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation. Palaeogeogr Palaeoclimatol Palaeoecol 395:1–8

    Article  Google Scholar 

  • Mattey D, Lowry D, Duffet J, Fisher R, Hodge E, Frisia S (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth Planet Sci Lett 269:80–95

    Article  Google Scholar 

  • Mazari RK, Bagati TN, Chauhan MS, Rajagopalan G (1996) Palaeoclimatic record of last 2000 years in trans-Himalayan Lahaul-Spiti region. Proceedings of Nagoya IGBP-PAGES/PEP-II Symposium, In, pp 262–269

    Google Scholar 

  • Mishra PK, Anoop A, Schettler G, Prasad S, Jehangir A, Menzel P, Naumann R, Yousuf AR, Basavaiah N, Deenadayalan K, Wiesner MG, Gaye B (2015) Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quat Int 371:76–86

    Article  Google Scholar 

  • Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293

    Article  Google Scholar 

  • Orland IJ, Bar-Matthews M, Kita NT, Ayalon A, Matthews A, Valley JW (2008) Climate deterioration in the eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat Res 71:27–35

    Article  Google Scholar 

  • Pandey DN, Gupta AK, Anderson DM (2003) Rainwater harvesting as an adaptation to climate change. Curr Sci 85:46–59

    Google Scholar 

  • Pant GB (2003) Long- term climate variability and change over monsoon Asia. Journal of Indian Geophysical Union 7(3):125–134

    Google Scholar 

  • Perrin C, Prestimonaco L, Servelle G, Tilhac R, Maury M, Cabrol P (2014) Aragonite–calcite speleothems: identifying original and diagenetic features. J Sediment Res 84:245–269

    Article  Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000e3500 cal yr BP in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129

    Article  Google Scholar 

  • Rawat S, Gupta AK, Sangode SJ, Srivastava P, Nainwal HC (2015) Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, northwest Himalaya, India. Quaternary Science Review 114:167–181

    Article  Google Scholar 

  • Ray PK, Chattoraj CSL, Bisht MPS, Kannaujiya S, Pandey K, Goswami A (2016) Kedarnath disaster 2013: causes and consequences using remote sensing inputs. Nat Hazards 81(1):227–243

    Article  Google Scholar 

  • Raza W, Ahmad SM, Lone MA, Shen, CC, Sarma DS, Kumar A (2017) Summer monsoon variability in southern India during the last deglaciation: evidence from a high resolution stalagmite δ18O record. Palaeogeogr Palaeoclimatol Palaeoecol doi 10.1016/j.palaeo.2017.07.003

  • Rehfeld K, Marwan N, Breitenbach SFM, Kurths J (2012) Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Clim Dyn 41(1):3–19

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1992) Relation between long term trends of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985

    Article  Google Scholar 

  • Rühland K, Phadtare NR, Pant RK, Sangode SJ, Smol JP (2006) Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peat land from northern India. Geophys Res Lett 33:L15709. doi:10.1029/2006GL026704

    Article  Google Scholar 

  • Sanwal J, Kotlia BS, Rajendran C, Ahmad SM, Rajendran K, Sandiford M (2013) Climatic variability in central Indian Himalaya during the last 1800 years: evidence from a high resolution speleothem record. Quat Int 304:183–192

    Article  Google Scholar 

  • Scholz D, Hoffmann DL, Hellstrom J, Bronk Ramsey C (2012) A comparison of different methods for speleothem age modelling. Quat Geochronol 14:94–104

    Article  Google Scholar 

  • Sharma S, Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C, Chauhan MS, Morgenorth G (2004) Late glacial and Holocene environmental changes in Ganga Plain, Northern India. Quat Sci Rev 23:145–159

    Article  Google Scholar 

  • Shen CC, Cheng H, Edwards RL, Moran SB, Edmonds HN, Hoff JA, Thomas RB (2003) Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal Chem 75:1075–1079

    Article  Google Scholar 

  • Shen CC, Wu CC, Cheng H, Edwards RL, Hsieh YT, Gallet S, Chang CC, Li TY, Lam DD, Kano A, Hori M, Spötl C (2012) High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim Cosmochim Acta 99:71–86

    Article  Google Scholar 

  • Sinha A, Cannariato KG, Stott LD, Li HC, You CF, Cheng H, Edwards RL, Singh IB (2005) Variability of Southwest Indian summer monsoon precipitation during the Bølling-Ållerød. Geology 33:813–816

    Article  Google Scholar 

  • Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophysical Research Letters 34:L16707. doi:10.1029/2007GL030431

    Article  Google Scholar 

  • Sinha A, Kathayat G, Cheng H, Breitenbach SFM, Berkelhammer M, Mudelsee M, Biswas J, Edwards RL (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat Commun 6:6309. doi:10.1038/ncomms7309

    Article  Google Scholar 

  • Smith BN (1972) Natural abundance of the stable isotopes of carbon in biological systems. Bioscience 22:226–231

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–284

    Article  Google Scholar 

  • Thakur VC, Rawat BS (1992) Geologic map of western Himalaya, 1:1,000,000. India, Wadia Institute of Himalayan Geology, Dehra Dun

    Google Scholar 

  • von Rad U, Schulz H, Riech V, den Dulk M, Berner U, Sirocko F (1999) Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeogr Palaeoclimatol Palaeoecol 152(1):129–161

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308(5723):854–857

    Article  Google Scholar 

  • Webster PJ (1987) The elementary monsoon. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, New York, pp 3–32

    Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510

    Article  Google Scholar 

  • Weiss H, Coutry MA, Wetterstrom W, Guichard F, Senior L, Meadow R, Curnow A (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science 261:995–1004

    Article  Google Scholar 

  • Winner C (2012) Rain, rivers, and the fate of civilizations. Oceanus Magazine 49(3):30

    Google Scholar 

  • Wright RP (2010) The ancient Indus: urbanism, economy and society: case studies in early societies, vol 10. Cambridge University Press, Cambridge UK, p 416

    Google Scholar 

  • Xiao X, Haberle SG, Shen J, Yang X, Han Y, Zhang E, Wang S (2014) Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat Sci Rev 86:35–48

    Article  Google Scholar 

  • Yadava MG, Ramesh R (2005) Monsoon reconstruction from radiocarbon dated tropical Indian Speleothem. The Holocene 15:48–59

    Article  Google Scholar 

  • Yadava MG, Ramesh R, Pant GB (2004) Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. The Holocene 14:517–524

    Article  Google Scholar 

  • Zhao M, Li HC, Liu ZH, Mii HS, Sun HL, Shen CC, Kang SC (2015) Changes in climate and vegetation of central Guizhou in southwest China since the last glacial reflected by stalagmite records from Yelang Cave. J Asian Earth Sci 114(3):549–561

  • Zhou HY, Zhao JX, Wang Q, Feng YX, Tang J (2011) Speleothem-derived Asian summer monsoon variations in Central China during 54–46 ka. J Quat Sci 26(8):781–790. doi:10.1002/jqs.1506

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded under the SERB/DST Fast Track Scheme (Project No. SR SR/FTP/ES-91/2012) awarded to LMJ, and the MoES project (MoES/PO/Geosci/43/2015), executed by BSK. Our sincere thanks are due to Prof. Goslar for providing 14C AMS dates. C.-C. Shen is grateful to Taiwan ROC MOST grants (103-2119-M-002-022 and 104-2119-M-002-003). We thank the Directors, JNCSAR, Bangalore and NGRI, Hyderabad for providing analytical facilities and CAS in Geology, Kumaun University, Nainital for working facilities. Thanks are also due to both anonymous reviewers for their valuable comments to enable us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, L.M., Kotlia, B.S., Ahmad, S.M. et al. Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka BP using speleothem δ18O records from the Central Lesser Himalaya, India. Arab J Geosci 10, 356 (2017). https://doi.org/10.1007/s12517-017-3141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3141-7

Keywords

Navigation