Skip to main content

Advertisement

Log in

Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

There are several intermediate (SiO2 = 57.4–61.2 wt.%) subvolcanic bodies in the Bisheh area of eastern Iran. Petrochemical studies show that these bodies are calc-alkaline and metaluminous (A/NK ≥ 1.68, A/CNK ≤ 0.99) diorite porphyries. They are enriched in large-ion lithophile elements (LILE) and have negative anomalies of Nb, Ti, Ta, and P. Chondrite-normalized REE patterns exhibit light-rare-earth-elements (LREE) enrichment, with mildly fractionated REE patterns ((La/Yb)N < 10). Their Nb/Yb versus Th/Yb ratios are similar to rocks formed in active continental margins. Their isotopic (initial 87Sr/86Sr ratios is 0.70642 and initial ε Nd values is −1.49) and other geochemical data suggest that the Bisheh diorite porphyries formed by melting of an enriched phlogopite-bearing mantle source combined with subsequent crustal contamination. High values of Rb, Ba, and Th support magma contamination in the upper crust during magma evolution. Zr-U-Pb age dating for two diorite porphyries yield middle Eocene (Bartonian) ages of 39.25 ± 0.43 and 39.16 ± 0.41 Ma. These bodies have intruded into Paleocene limestone and caused metasomatism with iron oxide skarn formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdi M, Karimpour MH (2012) Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand. J Econ Geol 4:77–107 (in Persian with English abstract)

    Google Scholar 

  • Alavi M (1991) Tectonic map of the Middle East (1:2500 000). Geological Survey of Iran

  • Allen MB, Kheirkhah M, Emami MH, Jones SJ (2011) Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophys J Int 184:555–574

    Article  Google Scholar 

  • Anderson T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Arjmandzadeh R, Karimpour MH, Mazaheri SA, Santos JF, Medina JM, Homam SM (2010) Isotope geochemistry and petrogenesis of K-rich and strongly REE-fractionated calk-alkaline intrusives within the Lut Block, Eastern Iran. In: First Conference of the Iranian Society of Economic Geology, Ferdowsi University of Mashhad, Mashad, Iran, 885–891

  • Arjmandzadeh R, Karimpour MH, Mazaheri SA, Santos JF, Medina JM, Homam SM (2011) Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran). J Asian Earth Sci 41:283–296

    Article  Google Scholar 

  • Behrouzi A, Nazer NKh (1992) Geological map of Basiran. Tehran, Geological Survey of Iran, scale 1:100000

  • Berberian M (1981) Active faulting and tectonics of Iran. In: Gupta HK, Delany F M (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution: American Geophysical Union. Geodynamic series 3:33–69

  • Berberian M, King GC (1981) Towards a palaeogeography and tectonics evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types—25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Chiu HY, Chung SL, Wu FY, Liu D, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang Y, Chu MF (2009) Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477:3–19

    Article  Google Scholar 

  • Davies JH, Von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Davoudzadeh M, Soffel H, Schmith K (1981) On the rotation of the Central-East Iran microplate. Neues Jb Geol Paläontol Monat 3:180–192

    Google Scholar 

  • Delaloye M, Bingöl E (2000) Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. Int Geol Rev 42:241–268

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Pichon XLE, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauerh JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Eftekharnejad J (1973) Some information about the origin of the Flysch basin in Eastern Iran and its relation to plate tectonics theory. Geological Survey of Iran, Report No. 22

  • Esmaeily D, Nedelec A, Valizadeh MV, Moore F, Cotton J (2005) Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. J Asian Earth Sci 25:961–980

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Article  Google Scholar 

  • Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY (2009) Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction. Chem Geol 266:364–389

    Article  Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 8:235–273

    Article  Google Scholar 

  • Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic–felsic compositions at high P, T. Chem Geol 54:185–201

    Article  Google Scholar 

  • Haghipour A, Aghanabati A (1989) Geological map of Iran (2nd edn). Tehran, Geological survey of Iran, scale 1:2,500,000

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Hooper RJ, Baron I, Hatcher RD, Agah S (1994) The development of the southern Tethyan margin in Iran after the break-up of Gondwana: implications for the Zagros hydrocarbon province. Geosci (Geol Surv Iran) 4:72–85

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) Guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jackson J, McKenzie D (1984) Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264

    Article  Google Scholar 

  • Jung D, Keller J, Khorasani R, Marcks Chr, Baumann A, Horn P (1983) Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran. Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran 51:285–336

  • Karimpour MH, Malekzadeh A (2006) Comparison of the geochemistry of source rocks at Tannurjeh Au-bearing magnetite & Sangan Au-free magnetite deposits, Khorasan Razavi, Iran. Iran J Crystallogr Mineral 1:3–26 (in Persian with English abstract)

    Google Scholar 

  • Karimpour MH, Stern CR (2011) Mineral deposits of the Lut Block, Eastern Iran. 11th Biennial meeting SGA (Society for Geology Applied to Mineral Deposits)

  • Karimpour MH, Khin Z, Huston DL (2005) S-C-O isotopes, fluid inclusion microthermometry, and the genesis of ore bearing fluids at Qaleh-Zari Fe-Oxide Cu-Au-Ag Mine, Iran. J Sci Islam Repub Iran 16:153–168

    Google Scholar 

  • Karimpour MH, Stern CR, Farmer GL, Saadat S, Malekzadeh Shafaroudi A (2011) Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia 1:19–36

    Google Scholar 

  • Karimpour MH, Malekzadeh Shafaroudi A, Farmer GL, Stern CR (2012) Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran. J Econ Geol 4:1–27 (in Persian with English abstract)

    Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  Google Scholar 

  • Kuşcu I, Kuşcu GG, Meinert LD, Floyd PA (2002) Tectonic setting and petrogenesis of the Çelebi granitoid (Kirikkale—Turkey) and comparison with world skarn granitoids. J Geochem Explor 76:175–194

    Article  Google Scholar 

  • Lindenberg HG, Gröler K, Jacobshagen V, Ibbeken H (1984) Post-Paleozoic stratigraphy, structure and orogenetic evolution of the southern Sabzevar zone and the Taknar block. N Jb Geol Paläont Abh 168:287–326

    Google Scholar 

  • Ling QC, Liu CQ (2002) Behavior of the REEs and other trace elements during fluid-rock interaction related to ore-forming processes of the Yinshan transitional deposit in China. Geochem J 36:443–463

    Article  Google Scholar 

  • Lopez-Escobar L, Kilian R, Kempton P, Tagiri M (1993) Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41° 30′ and 46° 00′S, Chile. Rev Geol Chile 20:33–55

    Google Scholar 

  • Ludwig KR (2003) Isoplot v. 3.0: a geochronological toolkit for Microsoft Excel. Special publication, no. 4. Berkeley Geochronology Center, 70

  • Mahmoudi S, Masoudi F, Corfu F, Mehrabi B (2009) Magmatic and metamorphic history of the Deh-Salm metamorphic Complex, Eastern Lut block (Eastern Iran), from U–Pb geochronology. Int J Earth Sci (Geol Rundsch) 99:1153–1165

    Article  Google Scholar 

  • Malekzadeh Shafaroudi A, Karimpour MH, Mazaheri SA (2010) Rb–Sr and Sm–Nd isotopic compositions and petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran. Iran J Crystallogr Mineral 18:15–32

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Mazloumi AR, Karimpour MH, Rassa I, Rahimi B, Vosoughi Abedini M (2008) Kuh-E-Zar gold deposit in Torbat-e-Heydaryeh new model of gold mineralization. Iran J Crystallogr Mineral 16:363–376 (in Persian with English abstract)

    Google Scholar 

  • Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19:145–162

  • Meinert LD (1993) Igneous petrogenesis and skarn deposits. Geological Association of Canada Special Paper 40:569–583

  • Meinert LD (1995) Compositional variation of igneous rocks associated with skarn deposits—chemical evidence for a genetic connection between petrogenesis and mineralization. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, vol 23, Mineralogical Association of Canada, short course series., pp 401–418

    Google Scholar 

  • Meinert LD (1997) Application of skarn deposit zonation models to mineral exploration. Explor Min Geol 6:185–208

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Moore F, Deymar S, Taghipour B (2012) Genetic relation between skarn mineralization and petrogenesis of the Darreh Zerreshk granitoid intrusion, southwest of Yazd. J Econ Geol 3:97–110 (in Persian with English abstract)

    Google Scholar 

  • Newberry RJ (1987) Use of intrusive and calc-silicate compositional data to distinguish contrasting skarn types in the Darwin polymetallic skarn district, CA, U.S.A. Mineral Deposita 22:207–215

    Article  Google Scholar 

  • Newberry RJ, Swanson SE (1986) Scheelite skarn granitoids: an evaluation of the roles of magmatic source and process. Ore Geol Rev 1:57–81

    Article  Google Scholar 

  • Oyman T (2010) Geochemistry, mineralogy and genesis of the Ayazmant Fe–Cu skarn deposit in Ayvalik (Balikesir), Turkey. Ore Geol Rev 37:175–201

    Article  Google Scholar 

  • Pang KN, Chung SL, Zarrinkoub MH, Mohammadi SS, Yang HM, Chu C, Lee HY, Lo CH (2012) Alkali basalts in the Lut–Sistan region, eastern Iran. Chem Geol 306–307:40–53

    Article  Google Scholar 

  • Patiňo Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C, Vigneresse JL (eds) Understanding granites: integrating new and classical techniques. Geological Society, London. Special Publications 168:55–75

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Harris NW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pinto-Linares PJ, Levresse G, Tritlla J, Valencia VA, Torres-Aguilera JM, González M, Estrada D (2008) Transitional adakite-like to calc-alkaline magmas in a continental extensional setting at La Paz Au-Cu skarn deposits, Mesa Central, Mexico: metallogenic implications. Revista Mexicana de Ciencias Geológicas 25:39–58

    Google Scholar 

  • Ramezani J, Tucker R (2003) The Saghand region, Central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Pet 36:891–931

    Article  Google Scholar 

  • Ray GE, Dawson GL, Webster ICL (1996) The stratigraphy of the Nicola Group in the Hedley district, British Columbia, and the chemistry of its intrusions and Au skarns. Can J Earth Sci 33:1105–1126

    Google Scholar 

  • Ray GE, Webster ICL, Ballantyne SB, Kilby CE, Cornlius SB (2000) The geochemistry of three tin-bearing skarns and their related plutonic rocks, Atlin, Northern British Columbia. Econ Geol 95:1349–1365

    Google Scholar 

  • Reagan MK, Gill JB (1989) Coexisting calcalkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source. J Geophys Res 94:4619–4633

    Article  Google Scholar 

  • Regard V, Bellier O, Thomas JC, Bourlès D, Bonnet S, Abbassi MR, Braucher R, Mercier J, Shabanian E, Soleymani S, Feghhi K (2005) Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophys J Int 162:177–203

    Article  Google Scholar 

  • Regard V, Hatzfeld D, Molinaro M, Aubourg C, Bayer R, Bellier O, Yamini-Fard F, Peyret M, Abbassi M (2010) The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. Geological Society of London Special Publications 330:43–64

  • Richards J, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Econ Geol 107:295–332

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 373–400

    Chapter  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Saadat S, Karimpour MH, Stern C (2010) Petrochemical characteristics of Neogene and Quaternary alkali olivine basalts from the western margin of the Lut block, Eastern Iran. Iran J Earth Sci 2:87–106

    Google Scholar 

  • Samani B, Ashtari S (1992) Geological evolution of Sistan and Baluchestan area. Journal of Earth Sciences 4. Geological survey of Iran

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Tarkian M, Lotfi M, Baumann A (1983) Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran 51:357–383

  • Tirrul R, Bell IR, Griffis RJ, Camp VE (1983) The Sistan suture zone of eastern Iran. Geol Soc Am Bull 94:134–150

    Article  Google Scholar 

  • Vavra G, Gebauer D, Schmid R (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulite of the Ivrea Zone (South Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358

    Article  Google Scholar 

  • Walker R, Gans P, Allen MB, Jackson J, Khatib M, Marsh N, Zarrinkoub M (2009) Late Cenozoic volcanism and rates of active faulting in eastern Iran. Geophys J Int 177:783–805

    Article  Google Scholar 

  • Warmada IW, Soe MT, Sinomiya J, Setijadji LD, Imai A, Watanabe K (2005) Petrology and geochemistry of intrusive rocks from Selogiri area, Central Java, Indonesia. Proceedings of the 2nd International Symposium on Earth Resources Engineering and Geological Engineering Education. Bangkok, 163–169

  • Westphal M, Bazhenov ML, Lauer JP, Pechersky DM, Sibuet JC (1986) Paleomagnetic implications on the evolution of the Tethys belt from the Atlantic Ocean to the Pamirs since the Triassic. Tectonophysics 123:37–82

    Article  Google Scholar 

  • Whitney DL, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 94:185–187

    Article  Google Scholar 

  • Williams IS (2001) Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48:557–580

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Harper Collins, London, 466p

    Book  Google Scholar 

  • Yousefi sourani L, Heydarian shahri MR, Karimpour MH (2008) Geology, mineralogy, fluid inclusion thermometry and ground magnetic of Shahrak Magnetite-Specularite Cu-Au prospecting area, Torbat-e-Heydariyeh, Iran. Iran J Crystallogr Mineral 16:505–516 (in Persian with English abstract)

    Google Scholar 

  • Yücel-Öztürk Y, Helvaci C, Satir M (2005) Genetic relations between skarn mineralization and petrogenesis of the Evciler Granitoid, Kazda., Canakkale, Turkey and comparison with world skarn granitoids. Turk J Earth Sci 14:225–280

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Professor Sun-Lin Chung from the Department of Geosciences, National Taiwan University, for supporting the researchers in the use of U-Th-Pb zircon age dating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nakhaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M., Mazaheri, S.A., Karimpour, M.H. et al. Geochronologic, geochemical, and isotopic constraints on petrogenesis of the dioritic rocks associated with Fe skarn in the Bisheh area, Eastern Iran. Arab J Geosci 8, 8481–8495 (2015). https://doi.org/10.1007/s12517-015-1834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1834-3

Keywords

Navigation