Skip to main content

Advertisement

Log in

Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan Watershed, Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of the current study was to produce groundwater spring potential map using a bivariate statistical model (frequency ratio) and geographical information system (GIS) in the Taleghan Watershed, Alborz Province, Iran. Firstly, field surveys were done for identifying and springs inventory mapping. In total, 457 springs were identified and mapped in GIS; out of that, 320 (70 %) locations were selected for training and the remaining 137 (30 %) cases were used for the model validation. The effective factors on the groundwater spring such as: slope percent, slope aspect, altitude, topographic wetness index, stream power index, slope length, plan curvature, distance from rivers, distance from roads, distance from faults, lithology, land use, soil hydrology groups, and drainage density were derived from the spatial database. Using the above effective factors, groundwater spring potential mapping was calculated using FR model as a bivariate statistical model, and the results were plotted in Arc GIS. Eventually, the receiver operating characteristic curve was drawn for spring potential map and the area under the curve (AUC) was figured. Validation of results indicated that the frequency ratio model (AUC = 75.99 %) performed fairly good predication accuracy. The results of groundwater spring potential map may be helpful for planners and engineers in water resource management and land use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akgün A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54:1127–1143

    Article  Google Scholar 

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1): 23–34

    Google Scholar 

  • Aniya M (1985) Landslide-susceptibility mapping in the Amahata river basin, Japan. Annal Assoc Am Geogr 75(1):102–114

    Article  Google Scholar 

  • Arkoprovo B, Adarsa J, Shashi Prakash S (2012) Delineation of groundwater potential zones using satellite remote sensing and geographic information techniques: a case study from Ganjam district, Orissa, India. Res J Recent Sci 9:59–66

    Google Scholar 

  • Arthur JD, Wood HAR, Baker AE, Cichon JR, Raines GL (2007) Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Nat Resour Res 16(2):93–107

    Article  Google Scholar 

  • Ayazi MH, Pirasteh S, Arvin AKP, Pradhan B, Nikouravan B, Mansor S (2010) Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geo-informatics techniques. Dis Adv 3(1):51–57

    Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon, Ottawa

    Google Scholar 

  • Chenini I, Ben Mammou A (2010) Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci 36(6):801–817

    Article  Google Scholar 

  • Chenini I, Ben Mammou A, May ME (2010) Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resour Manage 24(5):921–939

    Article  Google Scholar 

  • Chi K, Lee BJ (1994) Extracting potential groundwater area using remotely sensed data and GIS techniques. In: Proceedings of the Regional Seminar on Integrated Applications of Remote Sensing and GIS for Land and Water Resources Management. Bangkok (Bangok: Econ and Soci Commi for Asia and the Pacific) 64–69.

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens 30:231–250

    Article  Google Scholar 

  • Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology 111:79–87

    Article  Google Scholar 

  • Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. J Hydrol 394:285–295

    Article  Google Scholar 

  • Ganapuram S, Vijaya Kumar GT, Murali Krishna IV, Kahya E, Demirel MC (2009) Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw 40:506–518

    Article  Google Scholar 

  • Gaur S, Chahar BR, Graillot D (2011) Combined use of groundwater modeling and potential zone analysis for management of groundwater. Int J Appl Earth Observ 13:127–139

    Article  Google Scholar 

  • Ghayoumian J, Mohseni Saravi M, Feiznia S, Nourib B, Malekian A (2007) Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J Asian Earth Sci 30:364–374

    Article  Google Scholar 

  • Geology Survey of Iran (GSI) (1997) http://www.gsi.ir/Main/Lang_en/index.html

  • Godebo TR (2005) Application of remote sensing and GIS for geological investigation and groundwater potential zone identification, Southeastern Ethiopian Plateau, Bale Mountains and the surrounding areas. ADDIS ABABA UNIVERSITY, Dissertation

    Google Scholar 

  • Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS based hydrogeological databases and groundwater modeling. Hydro J 9:555–569

    Google Scholar 

  • Greenbaum D (1992) Structural influences on the occurrence of groundwater in SE Zimbabwe. Geol Soci London Special Pub 66:77–85

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245

    Article  Google Scholar 

  • Hosseini M, Ghafouri AM, Amin MSM, Tabatabaei MR, Goodarzi M, Abde Kolahchi A (2012) Effects of land use changes on water balance in Taleghan Catchment, Iran. J Agr Sci Tech 14:1159–1172

    Google Scholar 

  • Jain PK (1998) Remote sensing techniques to locate ground water potential zones in upper Urmil River basin, district Chatarpur-central India. J Indian Soc Remote Sens 26(3):135–147

    Article  Google Scholar 

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development—an approach. Int J Remote Sens 24(5):993–1008

    Article  Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manage 21:427–467

    Article  Google Scholar 

  • Israil M, Al-hadithi M, Singhal DC, Kumar B, Rao MS, Verma K (2006) Groundwater resources evaluation in the Piedmont zone of Himalaya, India, using isotope and GIS technique. J Spat Hydrol 6(1):34–38

    Google Scholar 

  • Kaliraj S, Chandrasekar N, Magesh NS (2013) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci. doi:10.1007/s12517-013-0849-x

    Google Scholar 

  • Krishnamurthy J, Srinivas G (1995) Role of geological and geomorphological factors in groundwater exploration: a study using IRS LISS data. Int J Remote Sens 16(14):2595–2618

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–667

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33–41

    Article  Google Scholar 

  • Madrucci V, Taioli F, Cesar de Araujo C (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. J Hydrol 357:153–173

    Article  Google Scholar 

  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2012) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci. doi:10.1007/s12517-012-0795-z

    Google Scholar 

  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2013) A knowledge driven GIS modelling technique for prediction of groundwater potential zones at the Upper Langat Basin, Malaysia. Arab J Geosci 6(5):1621–1637. doi:10.1007/s12517-011-0469-2

    Article  Google Scholar 

  • Masetti M, Poli S, Sterlacchini S (2007) The use of the weights-of-evidence modeling technique to estimate the vulnerability of groundwater to nitrate contamination. Nat Resour Res 16 (2) doi:10.1007/s11053-007-9045-6

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Moore ID, Burch GJ (1986) Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Res 22:1350–1360

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydro Process 5:3–30

    Article  Google Scholar 

  • Mukherjee S (1996) Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur_Kanpur, India. Hydro J 19:1867–1884

    Google Scholar 

  • Murthy KSR (2000) Groundwater potential in a semi-arid region of Andhra Prades—a GIS approach. Int J Remote Sens 21(9):1867–1884

    Article  Google Scholar 

  • Murthy KSR, Mamo AG (2009) Multi-criteria decision evaluation in groundwater zones identification in Moyale–Teltele subbasin, South Ethiopia. Int J Remote Sens 30:2729–2740

    Article  Google Scholar 

  • Negnevitsky M (2002) Artificial intelligence: a guide to intelligent systems. Addison–Wesley/Pearson, Harlow, England, p 394

    Google Scholar 

  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2013) Estimating groundwater vulnerability to pollution using modified DRASTIC model in the Kerman agricultural area. Iran Environ Earth Sci. doi:10.1007/s12665-013-2690-7

    Google Scholar 

  • Nobre RCM, Filho OCR, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94:277–292

    Article  Google Scholar 

  • Oh HJ, Kim YS, Choi JK, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Ozdemir A (2011) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol. doi:10.1016/j.jhydrol.2011.05.015

    Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197

    Article  Google Scholar 

  • Pourghasemi HR, Gokceoglu C, Pradhan B, Deylami Moezzi K (2012a) Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In: Pradhan B, Buchroithner M (eds) Terrigenous mass movements. Springer, Berlin, pp 23–49. doi:10.1007/978-3-642-25495-6-2

    Chapter  Google Scholar 

  • Pourghasemi HR, Mohammady M, Pradhan B (2012b) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 97:71–84

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Deylami Moezzi K (2013a) A comparative assessment of prediction capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics Nat Hazards Risk 4(2):93–118. doi:10.1080/19475705.2012.662915

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013b) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6(7):2351–2365. doi:10.1007/s12517-012-0532-7

    Article  Google Scholar 

  • Pourghasemi HR, Goli Jirandeh A, Pradhan B, Xu C, Gokceoglu C (2013c) Landslide susceptibility mapping using support vector machine and GIS. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013d) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances, Nat Hazards, DOI: 10.1007/s11069-013-0728-5. (ISI, IF: 1.639)

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Gokceoglu C, Pradhan B (2013e) GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci DOI. doi:10.1007/s12517-012-0825-x

    Google Scholar 

  • Pradhan B (2009) Ground water potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Central European Journal of Geosciences 1(1):120–129

    Google Scholar 

  • Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365.

    Google Scholar 

  • Pradhan B, Lee S (2010a) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) Remote sensing and GIS based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogramm Fernerkun 2010(1):17–32. doi:10.1127/14328364/2010/0037

    Article  Google Scholar 

  • Pradhan B, Mansor S, Pirasteh S, Buchroithner M (2011) Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int J Remote Sens 32(14):4075–4087. doi:10.1080/01431161.2010.484433

    Article  Google Scholar 

  • Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55:467–475

    Article  Google Scholar 

  • Rao NS (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50(7):1067–1076

    Article  Google Scholar 

  • Regmi AD, Yoshida K, Pradhan B, Pourghasemi HR, Khumamoto T, Akgun A (2013) Application of frequency ratio, statistical index and weights-of-evidence models, and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. doi:10.1007/s12517-012-0807-z

    Google Scholar 

  • Saha D, Dhar YR, Vittala SS (2010) Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India. Environ Monit Assess 165:179–191

    Article  Google Scholar 

  • Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834

    Article  Google Scholar 

  • Shahid S, Nath SK, Roy J (2000) Groundwater potential modeling in a soft rock area using a GIS. Int J Remote Sens 21(9):1919–1924

    Article  Google Scholar 

  • Singh AK, Prakash SR (2003) An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed. In Map India Conference Mirzapur District UP India 2003

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:729–741

    Article  Google Scholar 

  • Sreedevi PD, Subrahmanyam K, Ahmed S (2005) Integrating approach for delineating potential zones to explore for groundwater in the Pageru river basin, Cuddapah district, Andhra Pradesh, India. Hydrogeol J 13:534–543

    Article  Google Scholar 

  • Srininivasan PR, Subramanian V (1999) Groundwater targeting through morphometric analysis in Mamundiyar river basin, Tamil Nadu. Deccan Geographer 37(1):22–31

    Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27:4599–4620

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 556

    Google Scholar 

  • Tweed SO, Leblanc M, Webb JA, Lubczynski MW (2007) Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol J 15(1):75–96

    Article  Google Scholar 

  • United State Department of Agriculture (USDA), Natural Resources Conservation Service (2007) National Engineering Handbook. title 210–VI–NEH.

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D Thesis Department of Geomatics the University of Melbourne 423 pp.

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz watershed (Iran) using an artificial neural network model: a comparison between multi-layer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6(8):2873–2888. doi:10.1007/s12517-012-0610-x

    Article  Google Scholar 

  • Zhang Z, Cheng Q (2002) GIS Spatial statistical analysis of groundwater in GTA, Canada. In Geosci and Remote Sens Symposium IGARSS '02. IEEE International. doi:10.1109/IGARSS.2002.1026503

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank of editorial comments and two anonymous reviewers for their helpful comments on the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pourghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, D.D., Rezaei, M., Pourghasemi, H.R. et al. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan Watershed, Iran. Arab J Geosci 8, 913–929 (2015). https://doi.org/10.1007/s12517-013-1161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1161-5

Keywords

Navigation