Skip to main content
Log in

Electrospraying: a Novel Technique for Efficient Coating of Foods

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

There is a continuous need for thin edible coatings with excellent barrier properties, which has resulted in the quest for new coating methods. Electrospraying is a novel coating technique that is known to yield fine droplets of size down to 20 μm and even smaller ones, giving the potential of ultra-thin and uniform coatings. In this review, various process parameters are discussed that influence the coating quality and efficiency for electrospraying. The droplet size during the spraying process is a function of operational parameters and liquid properties. Successful deposition of thin films has been reported for model (conductive and non-conductive) surfaces (aluminium, Parafilm and various membranes) as well as food surfaces (apple and candies). This review article is an attempt to summarize valuable information about process optimization for food applications. The existing scaling relations are presented here relating various process and product-related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abate AR, Thiele J, Weinhart M, Weitz DA (2010) Patterning microfluidic device wettability using flow confinement. Lab Chip 10:1774–1776. doi:10.1039/C004124F

    Article  CAS  Google Scholar 

  2. Abu-Ali J, Barringer SA (2005) Method for electrostatic atomization of emulsions in an EHD system. J Electrost 63:361–369. doi:10.1016/j.elstat.2004.11.004

    Article  CAS  Google Scholar 

  3. Amefia A, Abu-Ali J, Barringer S (2006) Improved functionality of food additives with electrostatic coating. Innovative Food Science and Emerging Technologies 7:176–181

    Article  CAS  Google Scholar 

  4. Andrade RD, Skurtys O, Osorio FA (2012) Atomizing spray systems for application of edible coatings. Compr Rev Food Sci Food Saf 11:323–337

    Article  CAS  Google Scholar 

  5. Barringer SA, Abu-Ali J, Chung, HJ (2005) Electrostatic powder coating of sodium erythorbate and GDL to improve color and decrease microbial counts on meat Innovative Food Science and Emerging Technologies 6:189–193

  6. Biehl H, Barringer S (2003) Physical properties important to electrostatic and nonelectrostatic powder transfer efficiency in a tumble drum. J Food Sci 68:2512–2515

    Article  CAS  Google Scholar 

  7. Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–1551

    Article  CAS  Google Scholar 

  8. Bock N, Dargaville TR, Woodruff MA (2014) Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. Eur J Pharm Biopharm 87:366–377. doi:10.1016/j.ejpb.2014.03.008

    Article  CAS  Google Scholar 

  9. Boom R, Schroen K, Vermue M (2011) Barrier technology in food products. In: Linnemann AR, Schroen CGPH, Boekel, MAJSV (eds) Food product design. 2nd edn. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  10. Bourlieu C, Guillard V, Vallès-Pamiès B, Guilbert S, Gontard N (2009) Edible moisture barriers: how to assess of their potential and limits in food products shelf-life extension? Crit Rev Food Sci Nutr 49:474–499

    Article  CAS  Google Scholar 

  11. Brownsill R (2015) Why Electrostatics. http://www.spiceapplications.com/why-electrostatics. Accessed 8–03-2015 2015

  12. Debeaufort F, Voilley A (2009) Lipid-based edible films and coatings. In: Embuscado, ME, Huber KC (eds) Edible films and coatings for food application. Springer New York, pp 135–164

    Chapter  Google Scholar 

  13. Elayedath S, Barringer S (2002) Electrostatic powder coating of shredded cheese with antimycotic and anticaking agents. Innovative Food Science and Emerging Technologies 3:385–390

    Article  CAS  Google Scholar 

  14. Enayati M, Chang M-W, Bragman F, Edirisinghe M, Stride E (2011) Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A Physicochem Eng Asp 382:154–164

    Article  CAS  Google Scholar 

  15. Gaona-Sánchez VA et al (2015) Preparation and characterisation of zein films obtained by electrospraying. Food Hydrocoll 49:1–10. doi:10.1016/j.foodhyd.2015.03.003

    Article  Google Scholar 

  16. Gomez-Mascaraque LG, Morfin RC, Pérez-Masiá R, Sanchez G, Lopez-Rubio A (2016) Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT Food Sci Technol 69:438–446. doi:10.1016/j.lwt.2016.01.071

    Article  CAS  Google Scholar 

  17. Gorty AV, Barringer SA (2011) Electrohydrodynamic spraying of chocolate. Journal of Food Processing and Preservation 35:542–549. doi:10.1111/j.1745-4549.2010.00500.x

    Article  Google Scholar 

  18. Hayati I, Bailey A, Tadros TF (1987a) Investigations into the mechanism of electrohydrodynamic spraying of liquids. II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. J Colloid Interface Sci 117:222–230

    Article  CAS  Google Scholar 

  19. Hayati I, Bailey AI, Tadros TF (1987b) Investigations into the mechanisms of electrohydrodynamic spraying of liquids. I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci 117:205–221

    Article  CAS  Google Scholar 

  20. Hossein J (2011) Whey protein films and coatings: a review. Pakistan J Nutr 10:296–301

    Article  Google Scholar 

  21. Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42:266–297

    Article  CAS  Google Scholar 

  22. Jaworek A (2008) Electrostatic micro- and nanoencapsulation and electroemulsification: a brief review. J Microencapsul 25:443–468

    Article  CAS  Google Scholar 

  23. Jaworek A, Sobczyk A, Czech T, Krupa A (2014) Corona discharge in electrospraying. J Electrost 72:166–178. doi:10.1016/j.elstat.2014.01.004

    Article  CAS  Google Scholar 

  24. Khan MKI (2013) Electrospraying for efficient coating of foods. Wageningen UR

  25. Khan MKI, Cakmak H, Tavman Ş, Schutyser M, Schroёn K (2013a) Anti-browning and barrier properties of edible coatings prepared with electrospraying. Innovative Food Sci Emerg Technol. doi:10.1016/j.ifset.2013.10.006

    Google Scholar 

  26. Khan MKI, Maan AA, Schutyser M, Schroёn K, Boom R (2013b) Electrospraying of water in oil emulsions for thin film coating. J Food Eng 119:776–780

    Article  CAS  Google Scholar 

  27. Khan MKI, Mujawar LH, Schutyser MAI, Schroën K, Boom R (2013c) Deposition of thin lipid films prepared by electrospraying. Food Bioprocess Technol 6:3047–3055. doi:10.1007/s11947-012-0974-7

    Article  CAS  Google Scholar 

  28. Khan MKI, Schutyser M, Schroën K, Boom R (2012a) Electrostatic powder coating of foods—state of the art and opportunities. J Food Eng 111:–5

  29. Khan MKI, Schutyser M, Schroën K, Boom R (2012b) The potential of electrospraying for hydrophobic film coating on foods. J Food Eng 108:410–416. doi:10.1016/j.jfoodeng.2011.09.005

    Article  CAS  Google Scholar 

  30. Khan MKI, Schutyser M, Schroën K, Boom R (2014) Barrier properties and storage stability of edible coatings prepared with electrospraying. Innovative Food Sci Emerg Technol 23:182–187. doi:10.1016/j.ifset.2014.03.001

    Article  CAS  Google Scholar 

  31. Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S (2014) Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. J Funct Foods 7:342–349. doi:10.1016/j.jff.2014.01.026

    Article  CAS  Google Scholar 

  32. Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf 6:60–75. doi:10.1111/j.1541-4337.2007.00018.x

    Article  CAS  Google Scholar 

  33. Luo CJ, Loh S, Stride E, Edirisinghe M (2012) Electrospraying and electrospinning of chocolate suspensions. Food Bioprocess Technol 5:2285–2300. doi:10.1007/s11947-011-0534-6

    Article  CAS  Google Scholar 

  34. Luo Y, Zhu J, Ma Y, Zhang H (2008) Dry coating, a novel coating technology for solid pharmaceutical dosage forms. Int J Pharm 358:16–22. doi:10.1016/j.ijpharm.2008.03.028

    Article  CAS  Google Scholar 

  35. Maan AA, Sahin S, Mujawar LH, Boom R, Schroën K (2013) Effect of surface wettability on microfluidic EDGE emulsification. J Colloid Interface Sci 403:157–159. doi:10.1016/j.jcis.2013.04.036

    Article  CAS  Google Scholar 

  36. Mayr MB, Barringer SA (2006) Corona compared with triboelectric charging for electrostatic powder coating. J Food Sci 71:E171–E177. doi:10.1111/j.1750-3841.2006.00024.x

    Article  CAS  Google Scholar 

  37. Mazumder MK, Wankum DL, Sims RA, Mountain JR, Chen H, Pettit P, Chaser T (1997) Influence of powder properties on the performance of electrostatic coating process. J Electrost 40-41:369–374

    Article  Google Scholar 

  38. Meng X, Zhang H, Zhu J (2009a) Characterization of particle size evolution of the deposited layer during electrostatic powder coating processes. Powder Technol 195:264–270

    Article  CAS  Google Scholar 

  39. Meng X, Zhu J, Zhang H (2009b) Influences of different powders on the characteristics of particle charging and deposition in powder coating processes. J Electrost 67:663–671

    Article  CAS  Google Scholar 

  40. Meng XB, Zhang H, Zhu JX (2008) The characteristics of particle charging and deposition during powder coating processes with coarse powder. J Phys D Appl Phys 41. doi:10.1088/0022–3727/41/19/195207

  41. Pavlth AE, Orts W (2009) Edible films and coatings; why, what and how? In: Embuscado ME, Huber KC (eds) Edible films and coatings for food application. Springer, New York, pp. 1–24

    Chapter  Google Scholar 

  42. Pérez-Masiá R, Lagaron JM, López-Rubio A (2014) Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. Carbohydr Polym 101:249–255. doi:10.1016/j.carbpol.2013.09.032

    Article  Google Scholar 

  43. Pérez-Masiá R, López-Nicolás R, Periago MJ, Ros G, Lagaron JM, López-Rubio A (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133. doi:10.1016/j.foodchem.2014.07.051

    Article  Google Scholar 

  44. Ratanatriwong P (2004) Sensory evaluation of electrostatically coated chips and powder physical property effects (size and food composition) on electrostatic coating improvement. PhD Thesis, The Ohio State University

  45. Shah U, Zhu J, Zhang C, Senior JN (2006) Numerical investigation of coarse powder and air flow in an electrostatic powder coating process. Powder Technol 164:22–32

    Article  CAS  Google Scholar 

  46. Sousa AMM, Souza HKS, Uknalis J, Liu S-C, Gonçalves MP, Liu L (2015) Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydr Polym 115:348–355. doi:10.1016/j.carbpol.2014.08.074

    Article  CAS  Google Scholar 

  47. Wilhelm O, Mädler L, Pratsinis SE (2003) Electrospray evaporation and deposition. J Aerosol Sci 34:815–836

    Article  CAS  Google Scholar 

  48. Wu Y, Weller CL, Hamouz F, Cuppett SL, Schnepf M (2002) Development and application of multicomponent edible coatings and films: a review. 44

  49. Xu Y, Hanna MA (2006) Electrospray encapsulation of water-soluble protein with polylactide: effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm 320:30–36

    Article  CAS  Google Scholar 

  50. Xu Y, Skotak M, Hanna M (2006) Electrospray encapsulation of water-soluble protein with polylactide. I. Effects of formulations and process on morphology and particle size. J Microencaps 23:69–78

    Article  CAS  Google Scholar 

  51. Zhang X, Kobayashi I, Uemura K, Nakajima M (2013) Direct observation and characterization of the generation of organic solvent droplets with and without triglyceride oil by electrospraying. Colloids Surf A Physicochem Eng Asp 436:937–943. doi:10.1016/j.colsurfa.2013.07.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kashif Iqbal Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.K.I., Nazir, A. & Maan, A.A. Electrospraying: a Novel Technique for Efficient Coating of Foods. Food Eng Rev 9, 112–119 (2017). https://doi.org/10.1007/s12393-016-9150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9150-6

Keywords

Navigation