Skip to main content
Log in

Overexpression of the 3’ half of the PHYB partially suppresses dwarfism in the brassinosteroid-insensitive bri1-5 mutant

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) control virtually every aspect of plant growth and development. BRs act alone or in combination with other signals. To identify the signaling components that interact with BRs, we screened for mutants that suppress the dwarf phenotypes of brassinosteroid insensitive 1-5 (bri1-5) using an overexpression mutagenesis method. We established a mutant population by introducing a cDNA library in which cDNA was overexpressed under a constitutive promoter into Arabidopsis bri1-5 plants, which lacked a functional brassinosteroid (BR) receptor. One of the mutants, dubbed ‘bri1-5 with long petioles’ (blp), was selected based on its suppression phenotype. blp contained a chimeric DNA consisting of the 3’ half of PHYB, a 2-bp insertion, and a part of the chloroplast ribosomal RNA gene. Re-introduction of the chimeric DNA into bri1-5 recapitulated the blp phenotype. Prompted by the phenotypic similarity between blp and phyB, we examined both the transcript and protein levels of PHYB in the mutants. The levels were lower in blp 35Spro:PHYB than in 35Spro:PHYB plants, suggesting that introduction of the chimeric gene interfered with the stability of PHYB transcripts. Genome-wide screening for a specific target phenotype resulted in the finding that overexpression of the 3’ half of PHYB in the sense direction can cause a loss-of-function phenotype, and that PHYB plays an important role in BR signaling. Our results validate overexpression mutagenesis as a method to identify the function of Arabidopsis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen M, Schwabb R, Chory J (2003) Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc Natl Acad Sci USA 100:14493–14498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119:897–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroidinsensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3 beta-like kinase. Plant Physiol 130:1506–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldman KA (2000) Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21:431–443

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11:207–221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chung Y, Choe S (2013) The Regulation of Brassinosteroid Biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Article  Google Scholar 

  • Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. Plant Cell 23:1219–1230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Devlin PF, Halliday KJ, Harberd NP, Whitelam GC (1996) The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: Novel phytochromes control internode elongation and flowering time. Plant J 10:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Kikis EA, Oka Y, Hudson ME, Nagatani A, Quail PH (2009) Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3. PLoS Genet 5:e1000352

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim B, Jeong YJ, Corvalan C, Fujioka S, Cho S, Park T, Choe S (2014a) Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J 77:737–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim B, Kwon M, Jeon J, Schulz B, Corvalan C, Jeong YJ, Choe S (2014b) The Arabidopsis gulliver2/phyB mutant exhibits reduced sensitivity to brassinazole. J Plant Biol 57:20–27

    Article  CAS  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid Signal Transduction from Receptor Kinases to Transcription Factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13:565–570

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li JM (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka Y, Matsushita T, Mochizuki N, Quail PH, Nagatani A (2008) Mutant Screen Distinguishes between Residues Necessary for Light-Signal Perception and Signal Transfer by Phytochrome B. PLoS Genet 15:e1000158

    Article  Google Scholar 

  • Perez-Perez JM, Ponce MR, Micol JL (2002) The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 242:161–173

    Article  CAS  PubMed  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the Gene for the Red Far-Red Light Receptor Phytochrome-B Alter Cell Elongation and Physiological-Responses Throughout Arabidopsis Development. Plant Cell 5:147–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–868

    Article  CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: An update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szekeres M, Nemeth K, KonczKalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H, Kozuka T, Kim GT (2002) Genetic control of petiole length in Arabidopsis thaliana. Plant Cell Physiol 43:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Koloszvari M, Quail PH (1996) Two small spatially distinct regions of phytochrome B are required for efficient signaling rates. Plant Cell 8:859–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner D, Tepperman JM, Quail PH (1991) Overexpression of Phytochrome-B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell 3:1275–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid Signaling Network and Regulation of Photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He JX, Chen M, Vafeados D, Yang YL, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  CAS  PubMed  Google Scholar 

  • Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes: Lightregulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95:13976–13981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwa Choe.

Additional information

These authors contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.J., Park, S., Suh, S.J. et al. Overexpression of the 3’ half of the PHYB partially suppresses dwarfism in the brassinosteroid-insensitive bri1-5 mutant. J. Plant Biol. 59, 83–91 (2016). https://doi.org/10.1007/s12374-016-0513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0513-6

Key words

Navigation