Skip to main content
Log in

AGL6-like MADS-box genes are sister to AGL2-like MADS-box genes

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

AGL6-like genes form one of the major subfamilies of MADS-box genes and are closely related to the AGL2 (Eclass) and SQUA (A-class) subfamilies. In Arabidopsis, AGL6 and AGL13 have been reported from the AGL6 subfamily, and AGL6 controls lateral organ development and flowering time. However, little is known about homologs of these genes in basal angiosperms. We identified new AGL6-like genes from several taxa from gymnosperms, basal angiosperms, monocots, and eudicots. These genes were analyzed together with previously reported AGL6-like genes. Structural analyses showed 1) a one-aa (amino acid) gap in the I-domain in all AGL6-like genes relative to AGL2-like and SQUA-like genes, 2) a seven-aa insertion in the C-domain of genes from asterids, and 3) a one-aa insertion in the C-domain of genes from gymnosperms. Broad phylogenetic analyses strongly showed that AGL6-like genes are sister to AGL2-like genes, and SQUA-like genes are sister to these two groups. The phylogenetic tree of AGL6-like genes generally tracks organismal phylogeny as inferred from multigene data sets; several gene duplications were detected in angiosperms (e.g., within Magnoliales), and one duplication was detected in gymnosperms. We hypothesize that the split between AGL6-like and AGL2-like genes occurred at least 290–309.2 mya based on our phylogenetic tree and the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • APGIII (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Sensi E, Hua C, Davies C, Thomas MR (2002) Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Science 162:887–895

    Article  CAS  Google Scholar 

  • Chanderbali AS, Kim S, Buzgo M, Zheng Z, Oppenheimer DG, Soltis DE, Soltist PS (2006) Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). Int J Plant Sci 167:1075–1089

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls — genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, Vanwent J, Dons HJM, Angenent GC, Vantunen AJ (1995) The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    PubMed  CAS  Google Scholar 

  • De Bodt S, Raes J, Van de Peer YV, Theissen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475–483

    Article  PubMed  Google Scholar 

  • de Folter S, Immink RGH, Kieffer M, Paenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Article  PubMed  Google Scholar 

  • Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci 40:301–326

    Article  CAS  Google Scholar 

  • Fan J, Li W, Dong X, Guo W, Shu H (2007) Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Sci China C Life Sci 50:676–689

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA-sequences: a maximum-likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies — an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  PubMed  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  PubMed  CAS  Google Scholar 

  • Gramzow L, Barker E, Schulz C, Ambrose B, Ashton N, Theissen G, Litt A (2012) Selaginella genome analysis — entering the “homoplasy heaven” of the MADS world. Front Plant Sci 3:214

    Article  PubMed  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gustafsonbrown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143

    Article  CAS  Google Scholar 

  • Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  PubMed  CAS  Google Scholar 

  • Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19:801–814

    Article  PubMed  CAS  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245–2258

    Article  PubMed  CAS  Google Scholar 

  • Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, Ma H, Soltis PS, Soltis DE (2005a) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Koh J, Ma H, Hu Y, Endress PK, Hauser BA, Buzgo M, Soltis PS, Soltis DE (2005b) Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): support for the bracteate origin of the calyptra. Intl J Plant Sci 166:185–198

    Article  CAS  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant J 62:807–816

    Article  PubMed  CAS  Google Scholar 

  • Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, Teeri TH (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902

    PubMed  CAS  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1999) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 151:915–915

    Google Scholar 

  • Kwantes M, Liebsch D, Verelst W (2012) How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 29:293–302

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20:299–313

    Article  PubMed  CAS  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development. Genetics 165:821–833

    PubMed  CAS  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  PubMed  CAS  Google Scholar 

  • Magallon S (2010) Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol 59:384–399

    Article  PubMed  Google Scholar 

  • Mapes G, Rothwell GW (1984) Premineralized ovulate cones of Lebachia from the late Palaeozoic limestones of Kansas. Paleontology 27:69–94

    Google Scholar 

  • Mapes G, Rothwell GW (1991) Structure and relationships of primitive conifers. Neues Jahrbuch für Geologie and Paläontologie-Abhandulungen 183:269–287

    Google Scholar 

  • Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ (1995) A characterization of the MADS-box gene family in maize. Plant J 8:845–854

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed  CAS  Google Scholar 

  • Moon YH, Kang HG, Jung JY, Jeon JS, Sung SK, An G (1999) Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Munster T, Pahnke J, DiRosa A, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94:2415–2420

    Article  PubMed  CAS  Google Scholar 

  • Nam J, dePamphilis CW, Ma H, Nei M (2003) Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20:1435–1447

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  PubMed  CAS  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025

    Article  PubMed  CAS  Google Scholar 

  • Paenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Didion T, Andersen CH, Nielsen KK (2004) MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J Plant Physiol 161:439–447

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Prakash AP, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J 29:141–151

    Article  PubMed  CAS  Google Scholar 

  • Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21:2591–2605

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell 8:1243–1259

    Article  PubMed  CAS  Google Scholar 

  • Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    PubMed  CAS  Google Scholar 

  • Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev 1:180–190

    Article  PubMed  CAS  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-Box family of transcription factors. Eur J Biochem 229:1–13

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Soltis DE, Soltis PS, Endress P, K., Chase MW (2005) Phylogeny and evolution of angiosperms, Sinauer, Sunderland Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  Google Scholar 

  • Swofford DL (2001) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods), Sinauer, Sunderland

    Google Scholar 

  • Tandre K, Albert VA, Sundas A, Engstrom P (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27:69–78

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimoto S, Mayama T, van der Krol A, Ohtsubo E (2000) The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells 5:89–99

    Article  PubMed  CAS  Google Scholar 

  • Viaene T, Vekemans D, Becker A, Melzer S, Geuten K (2010) Expression divergence of the AGL6 MADS domain transcription factor lineage after a core eudicot duplication suggests functional diversification. BMC Plant Biol 10:148

    Article  PubMed  Google Scholar 

  • West AG, Sharrocks AD (1999) MADS-box transcription factors adopt alternative mechanisms for bending DNA. J Mol Biol 286:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA 96:7342–7347

    Article  PubMed  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Kvarnheden A, Morris B (1999) Seven MADSbox genes in apple areexpressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

  • Yoo SK, Hong SM, Lee JS, Ahn JH (2011) A genetic screen for leaf movement mutants identifies a potential role for AGAMOUSLIKE 6 (AGL6) in circadian-clock control. Mol Cells 31:281–287

    Article  PubMed  CAS  Google Scholar 

  • Yoo SK, Wu X, Lee JS, Ahn JH (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J 65:62–76

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, King HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-Box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangtae Kim or Douglas E. Soltis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Soltis, P.S. & Soltis, D.E. AGL6-like MADS-box genes are sister to AGL2-like MADS-box genes. J. Plant Biol. 56, 315–325 (2013). https://doi.org/10.1007/s12374-013-0147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0147-x

Key words

Navigation