Skip to main content

Advertisement

Log in

Identification of SUMO-modified proteins by affinity purification and tandem mass spectrometry in Arabidopsis thaliana

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in eukaryotes. Although more than 200 SUMO target proteins have been characterized in yeasts and animals, only very few SUMO targets are known in plants. Here, to identify putative SUM1 associating proteins in Arabidopsis we developed a proteomics-type protocol employing a His-GST-AtSUM1 column conjugated to Affi-gel beads with total protein extracts from 3–4 week old seedlings. AtSUM1 binding proteins and/or sumoylated targets were obtained by a change in pH of the eluant and identified by mass spectrometry. Fifteen candidate SUMO-modified proteins have so far been identified. Candidate proteins were analyzed by a split ubiquitination assay in yeast and additionally by split-luciferase complement assays in planta to confirm binding specificity and activity to AtSUM1, and productive sumoylation through in vivo assays in E. coli. Among proteins found reliably sumoylated are AtMYB31 (transcription factor), ACS7 (1-amino-cyclopropane-1-carboxylate synthase 7), and Rho GDI1 (Rho GDPdissociation inhibitor family protein). These proteins will provide a basis for studying functions of SUMOylation in the regulation of diverse processes in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitinrelated modifier SUMO-1. J Mol Biol 280:275–286

    Article  PubMed  CAS  Google Scholar 

  • Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L (2009) Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 8:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  PubMed  CAS  Google Scholar 

  • Budhiraja R, Hermkes R, Müller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A (2009) Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol 149:1529–1540

    Article  PubMed  CAS  Google Scholar 

  • Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J-M (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol 146:368–376

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Pfeil JE, Gal S (2002) The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem 269:4675–1684

    Article  PubMed  CAS  Google Scholar 

  • Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci USA 107:17415–17420

    Article  PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Cutler K, Port MD, Yamamoto T, Vernon DM (2005) PIRLs: A novel class of plant intracellular leucine-rich repeat proteins. Plant Cell Physiol 46:913–922

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dominguez M, March-Diaz R, Reyes JC (2008) The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE Proteins. J Biol Chem 283:21469–21477

    Article  PubMed  CAS  Google Scholar 

  • Geisler-Lee J, O’Toole N, Ammar R, Provart NJ, Millar AH, Geisler M (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329

    Article  PubMed  CAS  Google Scholar 

  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24

    Article  PubMed  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the sumo-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  PubMed  CAS  Google Scholar 

  • Hecker C-M, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting Motifs. J Biol Chem 281:16117–16127

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Yang S, Zhang S, Liu M, Lai J, Qi Y, Shi S, Wang J, Wang Y, Xie Q, Yang C (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60:666–678

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 Ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21:2284–2297

    Article  PubMed  CAS  Google Scholar 

  • Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim W-Y, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun D-J, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530–540

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  PubMed  CAS  Google Scholar 

  • Kerscher O (2007) SUMO junction-what’s your function? EMBO Rep 8:550–555

    Article  PubMed  CAS  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–151

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung D-Y, Vierstra RD (2003) The Small Ubiquitin-like Modifier (SUMO) protein modification system in Arabidopsis: accumulation of SUMO 1 and 2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  PubMed  CAS  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  PubMed  CAS  Google Scholar 

  • Kroetz MB, Hochstrasser M (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol Biol 497:107–120

    Article  PubMed  CAS  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D, Burgyan J (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884

    Article  PubMed  CAS  Google Scholar 

  • Lee J et al. (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    Article  PubMed  CAS  Google Scholar 

  • Li T, Evdokimov E, Shen R-F, Chao C-C, Tekle E, Wang T, Stadtman ER, Yang DCH, Chock PB (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: A proteomic analysis. Proc Natl Acad Sci USA 101:8551–8556

    Article  PubMed  CAS  Google Scholar 

  • Lois LM (2010) Diversity of the SUMOylation machinery in plants. Biochem Soc Trans 38:60–64

    Article  PubMed  CAS  Google Scholar 

  • Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal ACO (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7:132–144

    PubMed  CAS  Google Scholar 

  • Melchior F (2000) SUMO-nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  PubMed  CAS  Google Scholar 

  • Merrill JC, Melhuish TA, Kagey MH, Yang S-H, Sharrocks AD, Wotton D (2010) A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity. PLoS One 5:e8794

    Article  PubMed  Google Scholar 

  • Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci USA 107:16512–16517

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106:5418–5423

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun D-J, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102: 7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Muthuswamy S, Meier I (2011) Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Planta 233:201–208

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Nagabuchi M, Takamura Y, Nakagawa T, Shinmyozu K, Nakayama J, Tanaka K (2009) Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Plant Cell Physiol 50:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei C, Chang H, Yeh E (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157:4277–1281

    PubMed  CAS  Google Scholar 

  • Park HJ, Park HC, Lee SY, Bohnert HJ, Yun D-J (2011a) Ubiquitin and Ubiquitin-like modifiers in plants. J Plant Biol 54:275–285

    Article  CAS  Google Scholar 

  • Park HC, Choi W, Park HJ, Cheong MS, Koo YD, Shin G, Chung WS, Kim W-Y, Kim MG, Bressan RA, Bohnert HJ, Lee SY, Yun D-J (2011b) Identification and molecular properties of SUMO-binding proteins in Arabidopsis. Mol Cells 32:143–151

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG (2005) A universal strategy for proteomic studies of sumo and other ubiquitin-like modifiers. Mol Cell Proteomics 4:56–72

    PubMed  CAS  Google Scholar 

  • Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: Conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145:119–134

    Article  PubMed  CAS  Google Scholar 

  • Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal ACO. (2008) The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol Cell Proteomics 7:2107–2122

    Article  PubMed  CAS  Google Scholar 

  • Seeler J-S, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36:271–279

    Article  PubMed  CAS  Google Scholar 

  • Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95:5187–5192

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–156

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT (2009) Detection of protein SUMOylation in vivo. Nat Protocols 4:1363–1371

    Article  CAS  Google Scholar 

  • van den Burg HA, Kini RK, Schuurink RC, Takken FLW (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998–2016

    Article  PubMed  Google Scholar 

  • Vertegaal ACO, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 279:33791–33798

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta, Proteins Proteomics 1764: 1940–1947

    Article  CAS  Google Scholar 

  • Yang S, Sharrocks AD (2010) The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol Cell Biol 30:2193–2205

    Article  PubMed  CAS  Google Scholar 

  • Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun D-J, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142:1548–1558

    Article  PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73:2249–2266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Jin Yun.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.J., Park, H.C., Choi, J. et al. Identification of SUMO-modified proteins by affinity purification and tandem mass spectrometry in Arabidopsis thaliana . J. Plant Biol. 56, 176–185 (2013). https://doi.org/10.1007/s12374-013-0127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0127-1

Keywords

Navigation