Skip to main content
Log in

Cloning and characterization of a putative UDP-rhamnose synthase 1 from Populus euramericana Guinier

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

L-Rhamnose is a constituent of plant primary cell wall polysaccharides including rhamnogalacturonan-I, rhamnogalacturonan-II, and other natural plant-based compounds. UDP-rhamnose serves as a rhamnose donor whose synthesis is catalyzed by UDP-rhamnose synthase (RHM). A RHM gene, PRHM was cloned from Populus euramericana Guinier. PRHM contains two domains: the NAD dependent epimerase/dehydratase family domain and the RmlD (dTDP-keto-rhamnose-4-keto-reductase) substrate-binding domain. Because the recombinant PRHM did not demonstrate any activity during an in vitro assay, complementation with an Escherichia coli mutant was carried out. The rfbD (dTDP-4-dehydrorhamnose reductase), which encodes an enzyme catalyzing the conversion of dTDP-4-keto-rhamnose to TDP-rhamnose, was mutated in E. coli. The mutant strain B-rfbD was transformed with PRHM gene and a flavonoid rhanmosyltransferase gene, AtUGT78D1. The resulting transformant was able to convert quercetin into quercetin 3-O-rhamnoside in a manner similar to that by the wild type E. coli strain harboring AtUGT78D1. This result indicated that PRHM catalyzed the conversion of UDP-glucose into UDP-rhamnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blankenfeldt W, Kerr ID, Giraud MF, McMiken HJ, Leonard G, Whitfield C, Messner P, Graninger M, Naismith JH (2002) Variation on a theme of SDR. dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode. Structure (Camb) 10:773–786

    Article  CAS  Google Scholar 

  • Choi HJ, Song JH, Kwon DH (2012) Quercetin 3-rhamnoside exerts antiinfluenza A virus activity in mice. Phytother Res 26:462–464

    PubMed  CAS  Google Scholar 

  • Choi HJ, Song JH, Park KS, Kwon DH (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur J Pharm Sci 37:329–333

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Beis K, Giraud MF, Blankenfeldt W, Allard S, Major LL, Kerr ID, Whitfield C, Naismith JH (2003) A structural perspective on the enzymes that convert dTDP-D-glucose into dTDP-Lrhamnose. Biochem Soc Trans 31:532–536

    Article  PubMed  CAS  Google Scholar 

  • Gibeaut DM, Carpita NC (1994) Biosynthesis of plant cell wall polysaccharides. FASEB J 8:904–915

    PubMed  CAS  Google Scholar 

  • Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH (2002) RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct Biol 7:398–402

    Google Scholar 

  • Ikan R (1999) Naturally Occurring Glycosides, Wiley, Chichester, UK

    Google Scholar 

  • Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol 5:695–713

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg J, Van Brederode J, Van Nigtevecht G (1978) The formation of UDP-L-rhamnose from UDP-D-glucose by an enzyme preparation of red campion (Silene Dioica (L) clairv) leaves. FEBS Lett 91:281–284

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Kin HJ, Ahn J-H (2012a) Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J Agric Food Chem 60:11143–11148

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Sung SH, Jung NR, Chong Y, Ahn JH (2010) Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase. J Mol Cat B: Enzym 63:194–199

    Article  CAS  Google Scholar 

  • Kim BG, Lee ER, Ahn JH (2012b) Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J Kor Soc Appl Biol Chem 55:141–145

    Article  CAS  Google Scholar 

  • Kim SK, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn JH (2009) Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J Kor Soc Appl Biol Chem 52:315–320

    Article  CAS  Google Scholar 

  • Lee YJ, Jeon Y, Lee, JS, Kim BG, Lee CH, Ahn JH (2007) Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull Kor Chem Soc 28:365–366

    Article  CAS  Google Scholar 

  • O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester in vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem 271:22923–22930

    Article  PubMed  Google Scholar 

  • Raetz C, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  PubMed  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284

    Article  PubMed  CAS  Google Scholar 

  • Takufi O, Tadashi N, Yoshifumi J (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 282:5389–5403

    Google Scholar 

  • Tatsimo SJN, Tamokou JD, Havyarimana L, Csupor D, Forgo P, Hohmann J, Kuiate J-R, Tane P (2012) Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res Notes 5:158

    Article  PubMed  CAS  Google Scholar 

  • Thapa M, Kim Y, Desper J, Chang K-O, Hua D (2012) Synthesis and antiviral activity of substituted quercetins. Bioorg Med Chem Lett 22:353–356

    Article  PubMed  CAS  Google Scholar 

  • Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden HM (1997) Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 36:6294–6304

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Yoon JA, Kim BG, Lee WJ, Lim Y, Chong Y, Ahn JH (2012) Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl Environ Microbiol 78:4256–4262

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Hoon Ahn.

Additional information

These two authors are equally contributed

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BG., Jung, W.D. & Ahn, JH. Cloning and characterization of a putative UDP-rhamnose synthase 1 from Populus euramericana Guinier . J. Plant Biol. 56, 7–12 (2013). https://doi.org/10.1007/s12374-012-0333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-012-0333-2

Key words

Navigation