Skip to main content

Advertisement

Log in

Buildings that ‘Speak’: Ichnological Geoheritage in 1930s Buildings in Piazza della Vittoria (Genova, Italy)

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

The geoheritage value of sedimentary building stones has mainly focused on physical sedimentary structures and body fossils. By contrast, little attention has been placed on the geoheritage significance of ichnofabrics, which are the sedimentary fabrics that have been reworked by organisms. This study aims to fill this gap by analysing the ichnofabric found on the buildings of Piazza della Vittoria, in Genova (Italy). Here, unusually visible and well-preserved specimens of the fossil burrow Bichordites are observed on the historical buildings designed by Marcello Piacentini, one of the local most prominent architects of the 1930s. The Bichordites of Piazza della Vittoria are winding meniscate burrows with a central string-like structure. Here, we interpret this ichnofabric as the result of the activity of a community of echinoids bioturbating a sand wave system. We have also located the historical quarry that provided material for the studied buildings with the same ichnofossils exposed. Surprisingly, the cuts on display on the buildings are much nicer than those in the outcrops and more taxon specific characteristics can be observed just on the tiles rather than in the field. For all these reasons, the geoheritage value of the Piazza della Vittoria ichnofabric relies in its unique scientific significance, the cultural value, and its potential future applications in research, teaching, urban geotourism and reference site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen JRL (1982) Mud drapes in sand-wave deposits: a physical model with application to the Folkestone beds (early Cretaceous, southeast England). Philos Trans R Soc A 306:291–345

    Google Scholar 

  • Alonso-Zarza AM, Genise JF, Cabrera MC, Mangas J, Martín-Pérez A, Valdeolmillos A, Dorado-Valiño M (2008) Megarhizoliths in Pleistocene aeolian deposits from Gran Canaria (Spain): Ichnological and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 265:39–51. https://doi.org/10.1016/j.palaeo.2008.04.020

    Article  Google Scholar 

  • Balletti F, Giontoni B (1990) Una città tra le due guerre: culture e trasformazioni urbanistiche. De Ferrari Editore, Genova

    Google Scholar 

  • Barnard PL, Hanes DM, Rubin DM, Kvitek RG (2006) Giant sand waves at the mouth of San Francisco Bay. Eos (Washington DC) 87:285–289

    Google Scholar 

  • Barreto JM, Pinto A, Rosato C, Rios D, Oliveira NS (2010) Rochas ornamentais na geologia urbana: Uma das sete maravilhas portuguesas no mundo. VIII Congresso Nacional de Geologia 15(54):1–4

    Google Scholar 

  • Baucon A (2009) Ulisse Aldrovandi (1522-1605): the study of trace fossils during the Renaissance. Ichnos 16:245–256. https://doi.org/10.1080/10420940902953205

    Article  Google Scholar 

  • Baucon A (2010a) Leonardo Da Vinci, the founding father of ichnology. Palaios 25:361–367. https://doi.org/10.2110/palo.2009.p09-049r

    Article  Google Scholar 

  • Baucon A (2010b) Da Vinci’ s Paleodictyon: the fractal beauty of traces. Acta Geol Pol 60:3–17

    Google Scholar 

  • Baucon A, Neto de Carvalho C (2016) Stars of the aftermath: Asteriacites beds from the Lower Triassic of the Carnic Alps (Werfen Formation, Sauris di Sopra), Italy. Palaios 31:161–176. https://doi.org/10.2110/palo.2015.015

    Article  Google Scholar 

  • Baucon A, Bordy E, Brustur T, Buatois LA, Cunningham T, de C, Duffin C, Felletti F, Gaillard C, Hu B, Hu L, Jensen S, Knaust D, Lockley M, Lowe P, Mayor A, Mayoral E, Mikuláš R, Muttoni G, Neto de Carvalho C, Pemberton SG, Pollard J, Rindsberg AK, Santos A, Seike K, Song HB, Turner S, Uchman A, Wang YY, Yi-ming G, Zhang L, Zhang WT (2012) A history of ideas in ichnology. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, Developments in sedimentology, vol 64. Elsevier, Amsterdam, pp 3–43

    Google Scholar 

  • Belaústegui Z, Belaústegui A (2017) Modernist architecture in Barcelona reveals a new trace fossil from the Miocene of Montjuic (NE Spain). Geol Acta 15:169–186

    Google Scholar 

  • Belaústegui AZ, Muñiz F, Nebelsick JH et al (2017) Echinoderm ichnology: bioturbation, bioerosion and related processes. J Paleontol 91:643–661. https://doi.org/10.1017/jpa.2016.146

    Article  Google Scholar 

  • Belaústegui Z, Belaústegui A, Muñiz F (2018) Fósiles urbanos, un patrimonio que pasa inadvertido. AEPECT Enseñanza de las Ciencias de la Tierra 26(1):118–121

    Google Scholar 

  • Benaroya H (2018) Building habitats on the moon: engineering approaches to lunar settlements. Springer

  • Benton MJ, Harper DAT (2009) Introduction to paleobiology and the fossil record. John Wiley & Sons

  • Bernardi M, Boschele S, Ferretti P, Avanzini M (2011) Bichordites monastiriensis: traccia di escavazione di echinidi nei sedimenti oligocenici della Valsugana. Stud Trent Sci Nat 88:311–314

    Google Scholar 

  • Bernardi AM, Boschele S, Ferretti P, Avvanzini M (2019) Echinoid Burrow Bichordites monastiriensis from the Oligocene of NE from the Oligocene of NE Italy. Acta Palaeontol Pol 55:479–486. https://doi.org/10.4202/app.2009.0064

    Article  Google Scholar 

  • Bland BH, Gibert JM, Goldring R (2001) A fossil whodunnit. Geol Today 17(6):229–230

    Google Scholar 

  • Bonci MC, Cabella R, Faccini F, Firpo M, Mandarino A, Piazza M (2019a) Geologia, paleontologia e geomorfologia della Pietra di Finale. In: G Murialdo, R Cabella, D Arobba (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 10–32

  • Bonci MC, Cabella R, Piazza M Tedeschi F (2019b) Le “facies” della Pietra di Finale: un atlante. In: G. Murialdo R, Cabella R, Arobba D (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 45-60

  • Boni P, Mosna S, Vanossi M (1968) La Pietra di Finale (Liguria Occidentale). Atti dell’Istituto di Geologia dell’Università di Pavia, XVIII, pp 102–150

    Google Scholar 

  • Boyd C, McIlroy D (2018) The morphology and mode of formation of Neoeione igen. nov. from the Carboniferous of northern England. Paläontol Z 92:179–190

    Google Scholar 

  • Brancucci G, Spesso M (2016) Le pietre liguri nell’architettura di Genova. L’età del fascismo, Franco Angeli

    Google Scholar 

  • Brandano M, Tomassetti L, Frezza V (2015) Halimeda dominance in the coastal wedge of Pietra di Finale (Ligurian Alps, Italy): The role of trophic conditions. Sedimentary Geology 320:30–37. https://doi.org/10.1016/j.sedgeo.(2015).02.001

    Article  Google Scholar 

  • Brocx M, Semeniuk V (2007) Geoheritage and geoconservation: history defintion scope and scale. J R Soc West Aust 90:53–87

    Google Scholar 

  • Brocx M, Semeniuk V (2019) Building stones can be of geoheritage significance. Geoheritage 11:133–149

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications, second edi. Chapman & Hall, London

    Google Scholar 

  • Bromley RG, Asgaard U (1975) Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bull Geol Soc Denmark 24:261–281

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge / New York

    Google Scholar 

  • Buchanan JB (1966) The biology of Echinocardium cordatum (Echinodermata: Spatangoidea) from different habitats. J Mar Biol Assoc U K 46:97–114

    Google Scholar 

  • Building Stones Database (2020) The building stones database. In: From “a Thousand Years Build. with Stone.” http://www.buildingstones.org.uk/the-building-stones-database/

  • Cáceres LM, Muñiz F, Rodríguez-Vidal J, Vargas JM, Donaire T (2014) Marine bioerosion in rocks of the prehistoric tholos of La Pastora (Valencina de la Concepción, Seville, Spain). J Archaeol Sci 41:435–446

    Google Scholar 

  • Cáceres LM, Vargas JM, Muñiz F, Donaire T, Sanjuán LG, Odriozola C, Rodríguez-Vidal J (2019) Natural “megalithic art” at Valencina (Seville): a geoarchaeological approach to stone, architecture, and cultural choice in Copper Age Iberia. Archaeol Anthropol Sci 11:4621–4641

    Google Scholar 

  • Cachão M, Freitas MC, Silva CM (1999) Geologia Augusta: Património, Geologia urbana e Cultura. Comunicações I Seminário Património Geológico Português, Lisboa, p 10

    Google Scholar 

  • Caruso C (2015) Bichordites monastiriensis ichnofabric from the Pleistocene shallow-marine sandstones at Le Castella (Crotone), Ionian Calabrian, southern Italy. Rivista Italiana di Paleontologia e Stratigrafia

  • Cevini P (1989) Genova anni ‘30, da Labò a Daneri. Sagep Editrice, Genova

    Google Scholar 

  • Conventi M, Murialdo G (2019) L'impiego della Pietra di Finale e le tecniche murarie dall'Età romana all'Altomedioevo. In: G. Murialdo, R. Cabella, D. Arobba (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 123-162

  • Crippa G, Baucon A, Felletti F, Raineri G, Scarponi D (2018) A multidisciplinary study of ecosystem evolution through early Pleistocene climate change from the marine Arda River section, Italy. Quat Res (United States) 89:533–562. https://doi.org/10.1017/qua.2018.10

    Article  Google Scholar 

  • D’Alessandro A, Uchman A (2007) Bichordites and Bichordites-Rosselia ichnoassemblages from the lower Pleistocene Tursi Sandstone (Southern Italy). SEPM Spec Publ 88:213–221

    Google Scholar 

  • Dallagiovanna G, Gaggero L, Seno S, Felletti F, Mosca P, Decarlis A, Pellegrini L, Poggi F, Bottero D, Mancin N, Lupi C, Bonini L, Lualdi A, Maino M, Toscani G (2011) Note illustrative della Carta Geologica d'Italia alla scala 1:50.000 - foglio 228 Cairo Montenotte. ISPRA - Regione Liguria, Litografia Artistica Cartografica s.r.l. 156 p

  • de Jesus CD, da Fonseca CL (1998) First record of 13 echinoderm species on the southwest coast of Portugal. Bol Inst Esp Ocean 15:343–349

    Google Scholar 

  • Del Lama EA, Bacci DLC, Martins L, Garcia MGM, Dehira LK (2015) Urban geotourism and the Old Centre of São Paulo City, Brazil. Geoheritage 7(2):147–164

    Google Scholar 

  • Díez-Herrero A, Vegas-Salamanca J (2011) De roca a roca, descubre el património geológico de la ciudad de Segovia. Ayuntamiento de Segovia, Concejalía de Turismo

    Google Scholar 

  • Fernandes MA, Corrêa RC (2007) Patrimônio icnofossilífero das vias públicas da cidade de São Carlos, SP: resgate histórico, científico e cultural como referência para um museu a céu aberto. In: Carvalho IS, Cassab RCT, Schwanke C, Carvalho MA, Fernandes ACS, Rodrigues MAC, Carvalho MSS, Arai M, Oliveira MEQ (eds) Paleontologia: Cenários de Vida. Interciência, Rio de Janeiro, pp 151–162

    Google Scholar 

  • Fernandes MA, Francischini H, Carvalho IS (2008) Paleoicnologia Urbana: o patrimônio fossilífero de Araraquara, Estado de São Paulo, Brasil. Mem Not 3:455–462

    Google Scholar 

  • Fernández-Martinéz E, Castaño-de-Luis R (2013) Geoturismo en la Ciudad de Burgos. In: Vegas J, Salazar A, Díaz-Martínez E, Marchán C (eds) Patrimonio geológico, un recurso para el desarrollo, Cuadernos del Museo Geominero, n 15. Instituto Geológico y Minero de España, Madrid

    Google Scholar 

  • Field ME, Nelson CH, Cacchione DA, Drake DE (1981) Sand waves on an epicontinental shelf: northern Bering Sea. Mar Geol:233–258

  • Francischini H, Fernandes MA, Kunzler J, Rodrigues R, Leonardi G, Carvalho IS (2020) The ichnological record of Araraquara sidewalks: history, conservation and perspectives. Geoheritage 12:50. https://doi.org/10.1007/s12371-020-00472-5

    Article  Google Scholar 

  • Frey RW, Pemberton SG (1985) Biogenic structures in outcrops and cores. Bull Can Petrol Geol 33:72–115

    Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207. https://doi.org/10.1111/j.1502-3931.1980.tb00632.x

    Article  Google Scholar 

  • Gaffikin P (1999) Set in stone: a geological guide to the building stones of Belfast. Environment and Heritage Service, 60

  • Giammarino S, Giglia G, Capponi G, Crispini L, Piazza M (2002) Carta Geologica della Liguria, a scala 1: 200.000. Laboratorio di Cartografia Digitale e GIS, Dipartimento di Scienze della Terra dell'Università di Siena

  • Gibert JM, Goldring R (2007) An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sediment Geol 194:1–16. https://doi.org/10.1016/j.sedgeo.2006.04.008

    Article  Google Scholar 

  • Gibert J, Goldring R (2008) Spatangoid-produced ichnofabrics (Bateig Limestone, Miocene, Spain) and the preservation of spatangoid trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 270:299–310. https://doi.org/10.1016/j.palaeo.2008.01.031

    Article  Google Scholar 

  • Gingras MK, MacEachern JA, Dashtgard SE (2011) Process ichnology and the elucidation of physico-chemical stress. Sediment Geol 237:115–134. https://doi.org/10.1016/j.sedgeo.2011.02.006

    Article  Google Scholar 

  • Goldring R, Cadée G, D’Alessandro A, et al (2004) Climatic control of trace fossil distribution in the marine realm. In: Mcilroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications, 228, London, pp 77–92

  • Grimmberger G, Hoffmann R, Kautz R (2013) Erstfund der Lebensspur Bichordites monastirensis in einem paläozänen Geschiebe. In: G. Hoffmann R, Kautz R (eds) Geschiebekd. Aktuell. pp 19–25

  • Gutiérrez-Marco JC, Martínez-Graña AM, González-Delgado JA (2019) Monsagro (Salamanca, Spain): an “Ordovician village” built with Cruziana and other trace fossils from the Armorican Quartzite. In: Proceedings of the 13th International Symposium omn the Ordovician Sysyem. pp 63–66

  • Hofmann R, Gabriela MMA, Elicki O, Shinaq R (2012) Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environnments from the Middle Cambrian (stage 5) of Jordan. J Paleontol 86:931–955

    Google Scholar 

  • Issel A (1886) Catalogo dei fossili della Pietra di Finale. Boll del Reg Com Geol Ital 17:27–43

    Google Scholar 

  • Kenworthy JP, Santucci VL (2006) A preliminary inventory of NPS paleontological resources found in cultural resource contexts, part 1: general overview. In Lucas, S.G, et al. (eds.), America’s antiquities (proceedings of the 7th Federal Fossil Conference). New Mexico Museum of Natural History Science, Albuquerque, NM. Bulletin 34, 70-76

  • Knaust D (2017) Atlas of trace fossils in well core: appearance, taxonomy and interpretation. Springer, Alphen aan den Rijn

    Google Scholar 

  • Kubalíková L, Kirchner K, Kuda F, Bajer A (2020) Assessment of urban geotourism resources: an example of two geocultural sites in Brno, Czech Republic. Geoheritage 12(7). https://doi.org/10.1007/s12371-020-00434-x

  • Liccardo A, Piekarz G Salamuni E (2008) Geoturismo em Curitiba. Mineropar, 122

  • Liccardo A, Mantesso-Neto V, Piekarz G (2012) Geoturismo urbano – educação e cultura. Anu Inst Geocienc 35(1):133–141

    Google Scholar 

  • Löwemark L, Lin Y, Chen H-F, Yang TN, Beier C, Werner F, Lee CY, Song SR, Kao SJ (2006) Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two ∼400 ky records from the eastern Mediterranean Sea. Palaeogeogr Palaeoclimatol Palaeoecol 239:406–425. https://doi.org/10.1016/j.palaeo.2006.02.013

    Article  Google Scholar 

  • Mammì I (2008) Pectinids and echinoids of the Pietra di Finale in the historical collection in the Dipteris. University of Genova, Italy

    Google Scholar 

  • Marini M (1986) Deformazioni fragili e semifragili nella Pietra di Finale (Liguria occidentale). Atti della Società Toscana di Scienze Naturali, Memorie, serie A, 93, 31–55

  • Martínez-Graña AM, Serrano L, González-Delgado JA, Dabrio CJ, Legoinha P (2016) Sustainable geotourism using digital technologies along a rural georoute in Monsagro (Salamanca, Spain). Int J Digit Earth 10:121–138. https://doi.org/10.1080/17538947.2016.1209582

    Article  Google Scholar 

  • Mateus O, Milan J (2009) A diverse Upper Jurassic dinosaur ichnofauna from Porto Dinheiro track assemblage. Lethaia 43:245–257. https://doi.org/10.1111/j.1502-3931.2009.00190.x

    Article  Google Scholar 

  • McIlroy (2004) The application of ichnology to Palaeoenvironmental and stratigraphic analysis. Geological Society of London, London

    Google Scholar 

  • McIlroy D (2008) Ichnological analysis: the common ground between ichnofacies workers and ichnofabric analysts. Palaeogeogr Palaeoclimatol Palaeoecol 270:332–338. https://doi.org/10.1016/j.palaeo.2008.07.016

    Article  Google Scholar 

  • McMillan AA, Gillanders RJ, Fairhurst JA (1999) Building stones of Edinburgh, 2nd edn. Edinburgh Geological Society, Edinburgh

    Google Scholar 

  • Minter NJ, Krainer K, Lucas SG, Braddy SJ, Hunt AP (2007) Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA. Palaeogeogr Palaeoclimatol Palaeoecol 246:390–423. https://doi.org/10.1016/j.palaeo.2006.10.009

    Article  Google Scholar 

  • Murialdo G (2019a) La Pietra di Finale nel Medioevo e nella prima Età moderna (fine X - inizi XVI secolo). In: G. Murialdo, R. Cabella, D. Arobba (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 199-306

  • Murialdo G (2019b) La Pietra di Finale dalla ricostruzione di Giovanni I Del Carretto alla committenza marchionale rinascimentale (1450-1535). In: G. Murialdo, R. Cabella D. Arobba (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 307-392

  • Murialdo G (2019c) “La pietra denominate di Finale”: usi e diffusioni della Pietra di Finale in Età moderna (XVI-XVIII secolo). In: G. Murialdo, R. Cabella, D. Arobba (eds), Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS - Bordighera (IM), 393-460

  • Murialdo G, Servente D (2019) La Pietra di Finale tra la fine del XIX e il XX secolo: il grande epilogo di una storia secolare. In: Murialdo G, Cabella R, Arobba D (eds) Pietra di Finale. Una risorsa naturale e storica del Ponente ligure. Istituto Internazionale di Studi Liguri ONLUS, Bordighera, pp 529–564

    Google Scholar 

  • Nara M (2013) The Bichordites ichnofabric in the Pleistocene current-generated sand ridge complex. Spanish J Palaeontol 29:191–202

    Google Scholar 

  • Nembrini M, Berra F, Porta G Della, Fiorani S (2017) Facies characterization and depositional model of the Pietra di Finale Formation (Miocene, Liguria, N Italy). J Mediterr Earth Sci (abstracts XIII Geosed Congr IX:185

  • Neto de Carvalho C (2006) Roller Coaster Behavior in the Cruziana Rugosa Group from Penha Garcia (Portugal): implications for the Feeding Program of Trilobites. Ichnos 13:255–265. https://doi.org/10.1080/10420940600843740

  • Neto de Carvalho C (2009) Cruziana d’Orbigny, 1842 em Portugal: da interpretação paleobiológica à consagração como Produto Geoturístico. Paleolusitana 1:33–42

    Google Scholar 

  • Neto de Carvalho C, Baucon A (2016) Giant trilobite burrows and their paleobiological significance (Lower-to-Middle Ordovician from Penha Garcia, Portugal). Comun Geológicas 103:71–81

    Google Scholar 

  • Neto de Carvalho C, Cachão M (2005) A Bicha Pintada (Milreu – Vila de Rei): Paradigma ecléctico das hierofanias com origem bioglífica. Zahara 5:77–90

    Google Scholar 

  • Neto de Carvalho C, Rodrigues JC, Baucon A (2014) “Fossil Art”: the importance and value of the palaeobiodiversity in the Naturtejo Global Geopark, under UNESCO (Portugal). Comun Geol 101

  • Neto de Carvalho C, Baucon A, Gonçalves D et al (2016a) Daedalus mega-ichnosite from the Muradal Mountain (Naturtejo Global Geopark, Central Portugal): between the Agronomic Revolution and the Ordovician Radiation. Comun Geológicas 103:59–70

    Google Scholar 

  • Neto de Carvalho C, Couto H, Figueiredo MV, Baucon A (2016b) Microbial-related biogenic structures from the Middle Ordovician slates of Canelas (Northern Portugal). Comun Geol:103

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (2005) Glossary of geology. American Geological Institute, Alexandria

    Google Scholar 

  • Nichols G, Williams E, Paola C (2007) Sedimentary processes, Environments and Basins

  • Palacio-Prieto JL (2014) Geoheritage within cities: urban geosites in Mexico City. Geoheritage 7(4):365–373

    Google Scholar 

  • Pätzold J (2002) Naturbausteine der Bremer Innenstadt. Bremer Geo-Touren, Marum, Bremen 2:50

    Google Scholar 

  • Pereira D, Marker B (2016) The value of original natural stone in the context of architectural heritage. Geosciences 6:1–9. https://doi.org/10.3390/geosciences6010013

    Article  Google Scholar 

  • Primavori P (2004) Lessico del settore lapideo - Stone sector lexicon. Zusi Editore, Verona

    Google Scholar 

  • Reineck HE (1967) Parameter von Schichtung und bioturbation. Geol Rundsch 56:420–438

    Google Scholar 

  • Robinson E (1993) A geological walk in Southwark. Proc Geol Assoc 104(40):285–299

    Google Scholar 

  • Robinson E (1997) The stones of the Mile End Road: a geology of Middlemiss country. Proc Geol Assoc 108(3):171–176

    Google Scholar 

  • Rodrigues, LA Agostinho, M (2016a) Faro – urban geology and paleontology guide. Centro Ciência Viva de Lagos

  • Rodrigues, LA Agostinho, M (2016b) Lagos – urban geology and paleontology guide. Centro Ciência Viva de Lagos

  • Rodrigues, LA Agostinho, M (2016c) Tavira – urban geology and paleontology guide. Centro Ciência Viva de Lagos

  • Rodrigues LA, Agostinho M, Manteigas R (2014) Geologia e Paleontologia Urbanas – potencialidades e aplicações em três cidades do Algarve. Comunicações Geológicas 101(Especial III):1359–1363

    Google Scholar 

  • Santamaria R (2019) “Tutta d’un colore tra bianco e rosso”: la Pietra di Finale nelle carte d’archivio genovesi. In: Murialdo G, Cabella R, Arobba D (eds) Pietra di Finale: Una risorsa naturale e storica del Ponente Ligure. Istituto Internazionale di Studi Liguri, Finale Ligure, pp 461–478

    Google Scholar 

  • Santoro VC, Amore E, Cavallaro L, Cozzo G, Foti E (2002) Sand waves in the Messina Strait, Italy. J Coast Res 36:640–653

    Google Scholar 

  • Savrda CE (2007) Taphonomy of trace fossils. In: Miller W (ed) Trace fossils. Concepts, Problems, Prospects, Amsterdam, pp 92–109

    Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin

    Google Scholar 

  • Seilacher A (2008) Fossil art: an exhibition of the Geologisches Institut Tubingen University Germany. CMB Publishing, Denmark, 98 pp

    Google Scholar 

  • Shrock RR (1934) Probable worm castings (‘coprolites’) in the Salem Limestone of Indiana. Proceedings of the Indiana Academy of Sciences 44:174–175

    Google Scholar 

  • Silva CM (2009) “Fósseis ao virar da Esquina”: um percurso pela paleontologia e pela geodiversidade urbana de Lisboa. Paleolusitana 1:453–463

    Google Scholar 

  • Silva CM, Cachão M (1998) “Paleontologia urbana”. Percursos citadinos de interpretação e educação (paleo)ambiental. Comunicações do Instituto Geológico e Mineiro 84(2):H33–H35

    Google Scholar 

  • Smith AB, Crimes TP (1983) Trace fossils formed by heart urchins - a study of Scolicia and related traces. Lethaia 16:79–92

    Google Scholar 

  • Sphear B, Clifford CW, Newell BR, Taylor RP (2003) Universal aesthetic of fractals. Comput Graph 27:813–820

    Google Scholar 

  • Sprott JC (1993) Automatic generation of strange attractors. Comput Graph 17:325–332

    Google Scholar 

  • Stern AG, Riccomini C, Fambrini GL, Chamani MAC (2006) Roteiro Geológico pelos edifícios e monumentos históricos do Centro da Cidade de São Paulo. Revista Brasileira de Geociências 36(4):704–711

    Google Scholar 

  • Sutherland DS (2000) Ecclesiastical geology. In: Hancock PI, Skinner BJ (eds) The Oxford companion to the earth. Oxford University Press, Oxford, pp 292–295

    Google Scholar 

  • Taylor A, Goldring R, Gowland S (2003) Analysis and application of ichnofabrics. Earth-Science Rev 60:227–259

    Google Scholar 

  • Todaro S (2019) The Potential Geosite of the “Libeccio Antico” Quarries : a sedimentological and stratigraphic characterisation of ornamental stone from Mt Cocuccio, Custonaci Marble District, Sicily. Geoheritage 11:809–820

    Google Scholar 

  • Tonnon PK, van Rijna LC, Walstraa DJR (2007) The morphodynamic modelling of tidal sand waves on the shoreface. Coast Eng 54:279–296

    Google Scholar 

  • Uchman A, Wetzel A (2011) Deep-sea ichnology: the relationships between depositional environment and endobenthic organisms, 1st edn. Elsevier B.V, Amsterdam

    Google Scholar 

  • Vanossi M, Cortesogno L, Galbiati B, Messiga B, Piccardo GB, Vannucci R (1984) Geologia delle Alpi Liguri: dati, problem, ipotesi. Mem Soc Geol Ital 28:5–75

    Google Scholar 

  • Villegas-Martín J, Guimar R (2017) Journal of South American Earth Sciences Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids. J S Am Earth Sci 80:404–410. https://doi.org/10.1016/j.jsames.2017.10.008

    Article  Google Scholar 

  • Weber A, van Dalfsen J, Passchier S, et al (2004) Eco-morphodynamics of the North Sea seafloor and macrobenthos zonation. In: Marine Sandwave and River Dune Dynamics – 1 & 2 April 2004 - Enschede, the Netherlands. pp 308–313

  • WoRMS (2020) World Register of Marine Species (WoRMS). www.marinespecies.org. Accessed 25 Jan 2020

Download references

Acknowledgements

Miata Marcolini (Milan) is thanked for providing the image of her artwork in Fig. 12c. Emanuele Giorgi (Trieste) is thanked for providing the photograph of the ichnofabric in Fig. 12d.

Funding

The research was supported by projects ALAN-X (D.R. 1331, 6/4/2018), PALEOGIANTS (D.R. n. 1148/19, 22/03/2019), CURIOSITY DRIVEN (D.R. 3189, 09/07/2018), Contratto Collaborazione Esterna D.D. n. 4878 - 04/11/2019 (University of Genova, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Baucon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baucon, A., Piazza, M., Cabella, R. et al. Buildings that ‘Speak’: Ichnological Geoheritage in 1930s Buildings in Piazza della Vittoria (Genova, Italy). Geoheritage 12, 70 (2020). https://doi.org/10.1007/s12371-020-00496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12371-020-00496-x

Keywords

Navigation