Skip to main content

Advertisement

Log in

The Geoheritage of the Water Intake of Triglio Ancient Aqueduct (Apulia Region, Southern Italy): a Lesson of Advanced Technology Insensitive to Climate Changes from an Ancient Geosite

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

Near Taranto (Southern Italy), the water intake of a huge ancient aqueduct, develops along the deep Triglio canyon and its branches. The water intake apparatus is a hypogeum stretch for water interception formed by tunnels converging in a single pipe, with a total length of about 4 km. The tunnels, mainly dug into limestones and calcarenites, drain the surrounding vadose zone fed by delayed infiltration of precipitation, small overlying superficial aquifers at the top of canyon flanks, or alluvial deposits covering the canyon bottom. The early hydrogeologists who designed the intake work had an extraordinary knowledge on how to drain vadose flow from unsaturated masses and how to combine the drainage from different zones, thus assuring a perennial water flow. Moreover, they were able to select the most permeable levels, only today clearly identified with advanced hydrogeological knowledge. The tunnels and the pits are in fact located between 130 and 170 m AMSL: This elevation range represents one of the specific elevation ranges recently ascertained in the carbonate platform of Murgia (Southern Italy) as marks of prolonged sea level stands. The geoarcheological study highlights the role of early hydrogeologists, forerunners of an environmental culture that led to the construction of an engineering masterstroke. It has been working for not less than a millennium, despite climate fluctuations. The sophisticated intake work of Triglio reminds the qanat or foggare, heritage of Persian, Arab, and North African culture. It is currently ascribed to the Roman period; however, it may date back to more recent times, probably to a period between the Arab (around 900 AD), and the following Norman or Swabian civilization. The dimension of the work and its outstanding technical value, which allowed its use up to date, deserve disclosure, enhancement, and conservation of this geosite as geological heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Canora F, Fidelibus MD, Spilotro G (2012a) La piccola età glaciale di Taranto (Puglia, Italia). Rend Online Soc Geol Ital 18:12–18. doi:10.3301/rol.2011.59

    Google Scholar 

  • Canora F, Fidelibus M, Spilotro G (2012b) La piccola età glaciale di Taranto (Puglia, Italy). In Proc of Conf. “Il clima nel bacino del mediterraneo negli ultimi 12000 anni”, Accademia Nazionale dei Lincei, XXIX Giornata dell’Ambiente, Rome, 17 ottobre 2011; Scienza e Lettere Ed. Commerciale, Roma 2012, 155–165

  • Canora F, Fidelibus M, Spilotro G (2012c) Coastal and inland karst morphologies driven by sea level stands: a GIS based method for their evaluation. Earth Surf Process Landf 37:1376–1386. doi:10.1002/esp 3246

    Article  Google Scholar 

  • Casnedi R (1988) La Fossa Bradanica: Origine, Sedimentazione e Migrazione. Mem Soc Geol Ital 41:439–448

    Google Scholar 

  • Cerruti A (1938) Le sorgenti sottomarine (Citri) del Mar Grande e del Mar Piccolo di Taranto. Ingegneria Navale VII, Napoli

    Google Scholar 

  • Chemello R, Silenzi S (2011) Vermetid reefs in the Mediterranean Sea as archives of sea-level and surface temperature changes. Chem Ecol 27:121–127

    Article  Google Scholar 

  • Comune di Taranto (1873) Lavori di restauro dell'acquedotto del Triglio, 27 dicembre 1873. Archivio Storico del Comune di Taranto - Taranto - Cat. X, busta 109, fasc. 158. T.S.: / - M.T.: / - R.: 18

  • Conte A (2005) L’acquedotto romano del Triglio da Statte a Taranto - Antica via dell’acqua in Puglia. Edizioni Pugliesi, Martina Franca (Taranto, Italy), ISBN 88-8348-074-0

  • Conte A, Ficocelli S (2006) L’acquedotto romano del Triglio da Statte a Taranto. Atti 1° Convegno di Spelelologia in Cavità Artificiali, Castellana Grotte (Bari, Italy), 2007. Grotte e dintorni 12

  • Cook ER, Seager R, Kushnir Y et al (2015) Old World megadroughts and pluvials during the Common Era. Sci Adv 1:e1500561

    Article  Google Scholar 

  • Cotecchia V, Magri G (1967) Gli spostamenti delle linee di costa quaternarie del mar Jonio fra capo Spulico e Taranto. Geol Appl Idrogeol II:3–28

    Google Scholar 

  • De Girolamo AM, Limoni PP, Portoghese P, Vurro M (2002) Il bilancio idrogeologico delle idrostrutture pugliesi: sovrasfruttamento e criteri di gestione. L'Acqua 3:33–45

    Google Scholar 

  • De Vitis S (1992) Taranto, acquedotto del Triglio. Soprintendenza Archeologica della Puglia. Notiziario delle attività di tutela. TARAS XII(2). Scorpione Editrice, Taranto

    Google Scholar 

  • Delle Rose M, Giuri F, Guastalla P, Parise M, Sammarco M (2006) Aspetti archeologici e condizioni geologiche-morfologiche degli antichi acquedotti pugliesi. L’esempio dell’acquedotto del Triglio nell’area Tarantina. Opera Ipogea 1-2:36–50

    Google Scholar 

  • deMenocal PB, Ortiz J, Guilderson T, Sarnthein M (2000) Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288:2198–2202. doi:10.1126/science.288.5474.2198

    Article  Google Scholar 

  • Fidelibus M D, Spilotro G, Canora F (2013) Reply to the discussion on ‘coastal and inland karst morphologies driven by sea level stands: a GIS based method for their evaluation’, by Filomena Canora, Dolores Fidelibus, Giuseppe Spilotro (2012). Earth Surface Processes and Landforms (2013) ESEX Commentary, 38(8): 898–901. doi:10.1002/esp.3410

  • Fidelibus MD, Balacco G, Gioia A, Iacobellis V, Spilotro G (2016) Mass transport triggered by heavy rainfall: the role of endorheic basins and epikarst in a regional karst aquifer. Hydrol Process. doi:10.1002/hyp.11037

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104

    Article  Google Scholar 

  • Goudeau MLS, Grauel AL, Tessarolo C, Leider A, Liang C, Bernasconi SM, Versteegh GJM, Zonneveld KAF, Boer W, Alonso-Hernandez CM, De Lange GJ (2014) The Glacial–Interglacial transition and Holocene environmental changes in sediments from the Gulf of Taranto, central Mediterranean. Mar Geol 348:88–102

    Article  Google Scholar 

  • Grauel AL, Leider A, Goudeau MLS, Müller IA, Bernasconi SM, Hinrichs KU, de Lange GJ, Zonneveld KAF, Versteegh GJM (2013) What do SST proxies really tell us? A high-resolution multiproxy (UK’37, TEXH86 and foraminifera d18O) study in the Gulf of Taranto, central Mediterranean Sea. Quat Sci Rev 73:115–131

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Incarbona A, Ziveri P, Di Stefano E et al (2010) The impact of the little ice age on coccolithophores in the central Mediterranean Sea. Clim Past 6:795–805

    Article  Google Scholar 

  • Laureano P (2012) Water catchment tunnels: qanat, foggara, falaj. An ecosystem vision. IWA – Spec. Conf. on Water&Wastewater Technologies in Ancient Civilizations, Istanbul-Turkey, 22 march 2012

  • Mayewski PA, Rohling EE, Curt Stager J et al (2004) Holocene climate variability. Quat Res 62:243–255

    Article  Google Scholar 

  • Montagna P, Devoti S, Silenzi S, Mazzoli C, Mc Cullock M, Scicchitano G (2008) High resolution natural archives provide new tools for climate reconstruction and monitoring in Mediterranean sea. Rend Lincei 19:121–140

  • Nieto-Moreno V, Martínez-Ruiz F, Giralt S, Jiménez-Espejo F, Gallego-Torres D, Rodrigo-Gámiz M, García-Orellana J, Ortega-Huertas M, De Lange GJ (2011) Tracking climate variability in the western Mediterranean during the late Holocene: a multiproxy approach. Clim Past 7:1395–1414

    Article  Google Scholar 

  • Pieri P, Sabato L, Tropeano M (1996) Significato geodinamico dei caratteri deposizionali e strutturali della Fossa Bradanica nel Pleistocene. Mem Soc Geol Ital 51:501–515

    Google Scholar 

  • Rohling EJ, Mayewski PA, Abu-Zied RH, Casford JSL, Hayes A (2002) Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Clim Dyn 18:587–593

    Article  Google Scholar 

  • Sella M, Turci M, Riva A (1988) Sintesi Geopetrolifera della Fossa Bradanica (Avanfossa Della Catena Appenninica Meridionale). Mem Soc Geol Ital 41:87–107

    Google Scholar 

  • Senatore MR, Normark WR, Pescatore T, Rossi S (1988) Structural framework of the Gulf of Taranto (Ionian Sea). Mem Soc Geol Ital 41:533–539

    Google Scholar 

  • Silenzi S, Antonioli F, Chemello R (2004) A new marker for surface sea temperature trend during the last centuries in temperate areas: vermetid reef. Glob Planet Chang 40:105–114

    Article  Google Scholar 

  • Spilotro G, Roccanova C (1990) Sea level changes and ancient mapping of Taranto area. In: Price G (ed) Proceedings of 6th International Congress of IAEG, Amsterdam, August 1990. Balkema, Rotterdam, pp 235–241

    Google Scholar 

  • Spilotro G, Fidelibus MD, Fidelibus C, Zinco MR (1993) Lithological and geotechnical features of the calcarenites in the west of the Murgian platform. In: Anagnostopoulos A et al (eds) Proc. of Int. Symposium on Geotechnical Engineering of hard soils - soft rocks, ISSMFE, IAEG, ISRM, Athens, 1993. A.A. Balkema, Rotterdam, pp 293–299

    Google Scholar 

  • Tadolini T, Spizzico M (1996) Caratterizzazione idrogeologica della zona delle sorgenti Tara (Taranto). Mem Soc Geol Ital 51:793–802

    Google Scholar 

  • Taricco C, Ghil M, Alessio S, Vivaldo G (2009) Two millennia of climate variability in the Central Mediterranean. Clim Past 5:171–181

    Article  Google Scholar 

  • Tropeano M, Cilumbriello A, Sabato L, Gallicchio S, Grippa A, Longhitano S, Bianca M, Gallipoli M, Mucciarelli M, Spilotro G (2013) Surface and subsurface of the Metaponto coastal plane (Gulf of Taranto – southern Italy): present day vs LGM landscape. Geomorphology 203:115–131. doi:10.1016/j.geomorph.2013.07.017

    Article  Google Scholar 

  • Versteegh GJM, De Leeuw JW, Taricco C, Romero A (2007) Temperature and productivity influences on Uk37 and their possible relation to solar forcing of the Mediterranean winter. Geochem Geophys Geosyst 8:Q09005

    Article  Google Scholar 

  • Ward P (1968) The origin and spread of qanats in the old world. Proc Am Philos Soc 112(3):170–181

    Google Scholar 

  • Westaway R, Bridgland D (2007) Late Cenozoic uplift of southern Italy deduced from fluvial and marine sediments: coupling between surface processes and lower-crustal flow. Quat Int 175:86–124

    Article  Google Scholar 

  • Wetter O, Pfister C, Werner JP et al (2014) The year-long unprecedented European heat and drought of 1540—a worst case. Clim Chang 125(3):349–363. doi:10.1007/s10584-014-1184-2

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Head Office of Acquedotto Pugliese (AQP) of Bari for the archive files kindly provided and the Speleo Statte Group for the in situ surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pellicani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidelibus, M.D., Pellicani, R., Argentiero, I. et al. The Geoheritage of the Water Intake of Triglio Ancient Aqueduct (Apulia Region, Southern Italy): a Lesson of Advanced Technology Insensitive to Climate Changes from an Ancient Geosite. Geoheritage 10, 327–339 (2018). https://doi.org/10.1007/s12371-017-0238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-017-0238-z

Keywords

Navigation