Skip to main content
Log in

Interacting with Non-anthropomorphic Robotic Artworks and Interpreting Their Behaviour

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Art installations involving robotic artifacts provide an opportunity to examine human relationships with robots designed solely for the purpose of sustaining evocative behaviours. In an attempt to determine the behavioural characteristics and personality traits attributed by a human to a robotic artifact, we investigated an audience’s experience of an installation that presented three robotic artifacts moving autonomously in an exhibition space. In order to describe the audience’s experience, we present two studies that revealed the psychological attributions spontaneously produced from observing the robots, and visitors’ physical exploration patterns inside the exhibition. We propose a psychological profile for the artwork, and a tentative organization for the attribution process. Using a cluster analysis performed on visitors’ trajectories inside the installation, we highlight four different exploration and interaction heuristics characterized by patterns of approach or withdrawal, passive observation and exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamewari K, Kato M, Kanda T, Ishiguro H, Hiraki K (2005) Six-and-a-half-month-old children positively attribute goals to human action and to humanoid-robot motion. Cognitive Dev 20:303–320. doi:10.1016/j.cogdev.2005.04.004

    Article  Google Scholar 

  2. Bartneck C, Kanda T, Mubin O, Mahmud Al A (2009) Does the design of a robot influence its animacy and perceived intelligence? Int J Soc Robot 1(2):195–204. doi:10.1007/s12369-009-0013-7

    Article  Google Scholar 

  3. Sciutti A, Bisio A, Nori F, Metta G, Fadiga L, Sandini G (2013) Robots can be perceived as goal-oriented agents. Interact Stud 14(3):329–350. doi:10.1075/is.14.3.02sci

    Google Scholar 

  4. Young JE, Sung J, Voida A, Sharlin E, Igarashi T, Christensen HI, Grinter RE (2011) Evaluating human-robot interaction. Int J Soc Robot 3(1):53–67. doi:10.1007/s12369-010-0081-8

    Article  Google Scholar 

  5. Nomura T, Kanda T, Suzuki T (2006) experimental investigation into influence of negative attitudes toward robots on human-robot interaction. Ai Soc 20(2):138–150

    Article  Google Scholar 

  6. Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi:10.1007/s12369-008-0001-3

    Article  Google Scholar 

  7. de Graaf B (2013) Species of illumination. http://www.boblab.nl/wordpress/species-of-illumination/

  8. Kamide H, Takubo T, Ohara K, Mae Y, Arai T (2013) Impressions of humanoids: the development of a measure for evaluating a humanoid. Int J Soc Robot 6(1):33–44. doi:10.1007/s12369-013-0187-x

    Article  Google Scholar 

  9. Forlizzi J (2007) How robotic products become social products: an ethnographic study of cleaning in the home. In: Proceedings of the 2nd ACM/IEEE international conference on human-robot interaction 2007, pp 129–136

  10. Sung J, Guo L, Grinter RE, Christensen HI (2007) “My Roomba is Rambo”: intimate home appliances. In: Proceedings of the 9th international conference on Ubiquitous computing, Springer, Berlin, pp 145–162

  11. Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable domestic robots: applying insights from social psychology. Int J Soc Robot 1(1):95–108. doi:10.1007/s12369-008-0006-y

    Article  Google Scholar 

  12. Hendriks B, Meerbeek B, Boess S, Pauws S, Sonneveld M (2011) Robot vacuum cleaner personality and behavior. Int J Soc Robot 3(2):187–195. doi:10.1007/s12369-010-0084-5

    Article  Google Scholar 

  13. Hoffman G, Ju W (2014) Designing robots with movement in mind. J Hum Robot Interact 3(1):89–122. doi:10.5898/JHRI.3.1.Hoffman

    Article  Google Scholar 

  14. Joosse M, Sardar A, Lohse M, Evers V (2013) BEHAVE-II: The revised set of measures to assess users’ attitudinal and behavioral responses to a social robot. Int J Soc Robot 5(3):379–388. doi:10.1007/s12369-013-0191-1

    Article  Google Scholar 

  15. Smart WD, Pileggi A, Takayama L (2010) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering research. http://openscholarship.wustl.edu/cse_research/38

  16. Yan H, Ang MH, Poo AN (2014) A survey on perception methods for human-robot interaction in social robots. Int J Soc Robot 6(1):85–119. doi:10.1007/s12369-013-0199-6

    Article  Google Scholar 

  17. Bartneck C, Forlizzi J (2004) A design-centred framework for social human–robot interaction. In:13th IEEE international workshop on robot and human interactive communication, pp 591–594

  18. Breazeal C (2002) Designing sociable robots. MIT Press, Cambridge

    MATH  Google Scholar 

  19. Breazeal C, Brooks A, Gray J, Hancher M, McBean J, Stiehl D, Strickon J (2003) Interactive robot theatre. Commun ACM 46(7):76–85

    Article  Google Scholar 

  20. Quinz E, Dautrey J (eds) (2014) Strange Design, Du design des objets aux design des comportements. Villeurbanne: it: editions

  21. Bianchini S, Bourganel R, Quinz E, Levillain F, Zibetti E (2015) (Mis)Behavioral objects. Empowerment of users vs. empowerment of objects. In: Bihanic D (ed) Empowering users through design. Springer, Berlin, pp 129–152

    Chapter  Google Scholar 

  22. Cornock S, Edmonds E (1973) The creative process where the artist is amplified or superseded by the computer. Leonardo 16:11–16

    Article  Google Scholar 

  23. Rutherford MD, Kuhlmeier VA (2013) Section introduction: The perception of animacy and intentional behavior. In: Rutherford MD, Kuhlmeier VA (eds) Social perception. MIT Press, Cambridge, MA

    Chapter  Google Scholar 

  24. Breazeal C (2003) Toward sociable robots. Robot Auton Syst 42(3–4):167–175. doi:10.1016/S0921-8890(02)00373-1

    Article  MATH  Google Scholar 

  25. Braitenberg V (1984) Vehicles: experiments in synthetic psychology. MIT Press, Cambridge, MA

    Google Scholar 

  26. Dunne A, Raby F (2007) Critical design FAQ. http://www.dunneandraby.co.uk/content/bydandr/13/0

  27. Chambers J (2010) Artificial defence mechanisms. http://objects.jameschambers.co.uk

  28. St Onge D, Reeves N (2010). Human interaction with flying cubic automata. In: Smart WD, Pileggi A, Takayama L (eds) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering research. http://openscholarship.wustl.edu/cse_research/38

  29. de Graaf MM, Allouch SB (2013) Exploring influencing variables for the acceptance of social robots. Robot Auton Syst 61(12):1476–1486. doi:10.1016/j.robot.2013.07.007

    Article  Google Scholar 

  30. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Atten Percept Psychophys 14(2):201–211

    Article  Google Scholar 

  31. Heider F, Simmel (1944) Social perception and phenomenal causality. Am J Psychol 57:244–249

    Article  Google Scholar 

  32. Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4(8):299–309

    Article  Google Scholar 

  33. Heider F (1958) The psychology of interpersonal relations. Wiley, New York

    Book  Google Scholar 

  34. Dasser V, Ulbaek I, Premack D (1989) The perception of intention. Science 243(4889):365–367

    Article  Google Scholar 

  35. Bassili JN (1976) Temporal and spatial contingencies in the perception of social events. J Pers Soc Psychol 33(6):680–685

    Article  Google Scholar 

  36. Tremoulet PD, Feldman J (2000) Perception of animacy from the motion of a single object. Perception 29(8):943–951. doi:10.1068/p3101

    Article  Google Scholar 

  37. Dittrich W, Lea S (1994) Visual perception of intentional motion. Perception 23:253–268

    Article  Google Scholar 

  38. Gao T, Newman GE, Scholl BJ (2009) The psychophysics of chasing: a case study in the perception of animacy. Cogn Psychol 59(2):154–179. doi:10.1016/j.cogpsych.2009.03.001

    Article  Google Scholar 

  39. Meerbeek B, Saerbeck M, Bartneck C (2009) Iterative design process for robots with personality. In: Dautenhahn K. (ed) AISB2009 Symposium on new frontiers in human-robot interaction, pp 94–101

  40. Fukuda H, Ueda K (2010) Interaction with a moving object affects one’s perception of its animacy. Int J Soc Robot 2(2):187–193. doi:10.1007/s12369-010-0045-z

    Article  Google Scholar 

  41. Kahn PH Jr, Friedman B, Perez-Granados DR, Freier NG (2006) Robotic pets in the lives of preschool children. Interact Stud 7(3):405–436. doi:10.1145/985921.986087

    Article  Google Scholar 

  42. Okita SY, Schwartz DL (2006) Young children’s understanding of animacy and entertainment robots. Int J Humanoid Robot 03(03):393–412. doi:10.1142/s0219843606000795

    Article  Google Scholar 

  43. Haring KS, Matsumoto Y, Watanabe K (2013) How do people perceive and trust a lifelike robot. In: Proceedings of the world congress on engineering and computer science 2013 (WCECS 2013), Vol I,

  44. Höök K, Sengers P, Andersson G (2003) Sense and sensibility: evaluation and interactive art. In: Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, pp 241–248

  45. Costello B, Edmonds, E (2007) A study in play, pleasure and interaction design. In: Proceedings of the 2007 conference on Designing pleasurable products and interfaces. ACM, pp 76-91

  46. Bilda Z, Muller L, Edmonds E (2009) Artist, evaluator and curator: three viewpoints on interactive art, evaluation and audience experience. Digit Creat 20(3):141–151. doi:10.1080/14626260903083579

    Article  Google Scholar 

  47. Loke L, Robertson T (2009) Design representations of moving bodies for interactive, motion-sensing spaces. Int J Hum Comput Stud 67:394–410. doi:10.1016/j.ijhcs.2008.11.003

    Article  Google Scholar 

  48. Boehner K, Thom-Santelli J, Zoss A, Gay G, Hall JS, Barrett T (2005) Imprints of place: creative expressions of the museum experience. In: CHI’05 extended abstracts on Human factors in computing systems. ACM, pp 1220–1223

  49. Bilda Z, Candy L, Edmonds E (2008) Designing for creative engagement. Des Stud 29(6):525–540. doi:10.1016/j.destud.2008.07.009

    Article  Google Scholar 

  50. Edmonds E, Muller L, Connell M (2006) On creative engagement. Vis Commun 5(3):307–322. doi:10.1177/1470357206068461

    Article  Google Scholar 

  51. Candy L, Amitani S, Bilda Z (2006) Practice-led strategies for interactive art research. CoDesign 3:209–223

    Article  Google Scholar 

  52. Tractinsky N, Katz AS, Ikar D (2000) What is beautiful is usable. Interact Comput 13(2):127–145. doi:10.1016/S0953-5438(00)00031-X

    Article  Google Scholar 

  53. Hassenzahl M (2004) The interplay of beauty, goodness, and usability in interactive products. Hum Comput Interact 19(4):319–349. doi:10.1207/s15327051hci1904_2

    Article  Google Scholar 

  54. Fernaeus Y, West U (2010) Disturbing, Fragile, Inexorable: Human-Robot Interactions from a Perspective of Artistic Practice. In: Smart WD, Pileggi A, Takayama L (eds) What do collaborations with the arts have to say about human-robot interaction? Report Number: WUCSE-2010-15 (2010). All computer science and engineering research

  55. Michalowski MP, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: 9th IEEE international workshop on advanced motion control, 2006. IEEE, Piscataway, pp 762-767

  56. Walters ML, Dautenhahn K, Woods SN, Koay KL, Te Boekhorst R, Lee D (2006) Exploratory studies on social spaces between humans and a mechanical-looking robot. Connect Sci 18(4):429–439. doi:10.1080/09540090600879513

    Article  Google Scholar 

  57. Sidner CL, Lee C, Kidd CD, Lesh N, Rich C (2005) Explorations in engagement for humans and robots. Artif Intel 166(1–2):140–164. doi:10.1016/j.artint.2005.03.005

    Article  Google Scholar 

  58. Hall ET (1966) The hidden dimension. Doubleday

  59. Hall ET (1963) A system for the notation of proxemic behavior. Am Anthropol 65(5):1003–1026

    Article  Google Scholar 

  60. Walters ML, Dautenhahn K, Koay KL, Kaouri C, Boekhorst RT, Nehaniv C, Werry I, Lee D (2005) Close encounters: Spatial distances between people and a robot of mechanistic appearance. In: 5th IEEE-RAS international conference on humanoid robots, 2005, pp. 450–455

  61. Glas DF, Kamei K, Kanda T, Miyashita T, Hagita N (2015) Human-robot interaction in public and smart spaces. In: Mohammed S, Moreno JC, Kong K, Amirat Y (eds) Intelligent assistive robots. Springer, New York, pp 235–273

    Google Scholar 

  62. Oyama T, Yoshida E, Kobayashi Y, Kuno Y (2013) Tracking visitors with sensor poles for robot’s museum guide tour. In: 6th international conference on human system interaction (HSI). IEEE, Piscataway, pp 645–650

  63. Rashed MG, Suzuki R, Lam A, Kobayashi Y, Kuno Y (2015) Toward museum guide robots proactively initiating interaction with humans. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts. ACM, pp. 1–2

  64. Vom Lehn D, Heath C, Hindmarsh J (2001) Exhibiting interaction: conduct and collaboration in museums and galleries. Symb Interact 24(2):189–216. doi:10.1525/si.2001.24.2.189

    Article  Google Scholar 

  65. Costello B, Muller L, Amitani S, Edmonds E (2000) Understanding the experience of interactive art: iamascope in beta_space. In: Pisan Y (ed) Australasian conference on interactive entertainment, Creativity and Cognition Studio Press, pp 49–56

  66. Leslie AM (1994) ToMM, ToBy and Agency. In: Hirschfeld L, Gelman SA (eds) Mapping the mind: domain specificity in cognition and culture. cambridge University Press, New York

    Google Scholar 

  67. Tomasello M (2010) Origins of human communication. MIT Press, Cambridge

    Google Scholar 

  68. Premack D (1990) The infant’s theory of self-propelled objects. Cognition 36(1):1–16

    Article  Google Scholar 

  69. Michotte A (1963) The perception of causality. Basic Books, New York

    Google Scholar 

  70. Kotovsky L, Baillargeon R (2000) Reasoning about collisions involving inert objects in 7.5-month-old infants. Dev Sci 3(3):344–359

    Article  Google Scholar 

  71. Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA, Singh M, von der Heydt R (2012) A century of Gestalt psychology in visual perception I. Perceptual grouping and figure-ground organization. Psychol Bull 138(6):1172–1217. doi:10.1037/a0029333

    Article  Google Scholar 

  72. Gergely G, Nadasdy Z, Csibra G, Bíró S (1995) Taking the intentional stance at 12 months of age. Cognition 56:165–193. doi:10.1016/0010-0277(95)00661-H

    Article  Google Scholar 

  73. Luo Y, Baillargeon R (2005) Can a self-propelled box have a goal? Psychological reasoning in 5-month-old infants. Psychol Sci 16:601–608. doi:10.1111/j.1467-9280.2005.01582.x

    Article  Google Scholar 

  74. Schultz J, Bülthoff H (2013) Parametric animacy percept evoked by a single moving dot mimicking natural stimuli. J Vis 13:1–19. doi:10.1167/13.4.15

    Article  Google Scholar 

  75. Bertenthal BI, Proffitt DR, Spentner N, Thomans A (1985) The development of infant sensitivity to biomechanical motions. Child Dev 56:531–543. doi:10.2307/1129742

    Article  Google Scholar 

  76. Arterberry ME, Bornstein MH (2001) Three-month-old infants’ categorization of animals and vehicles based on static and dynamic attributes. J Exp Child Psychol 80:333–346. doi:10.1006/jecp.2001.2637

    Article  Google Scholar 

  77. Mareschal D, Johnson MH (2003) The “what” and “where” of object representations in infancy. Cognition 88:259–276. doi:10.1016/S0010-0277(03)00039-8

    Article  Google Scholar 

  78. Pauen S, Träuble B (2009) How 7-month-olds interpret ambiguous motion events: category-specific reasoning in infancy. Cogn Psychol 59:275–295. doi:10.1016/j.cogpsych.2009.06.001

    Article  Google Scholar 

  79. Saxe R, Tzelnic T, Carey S (2007) Knowing who dunnit: infants identify the causal agent in an unseen causal interaction. Dev Psychol 43(1):149–158. doi:10.1037/0012-1649.43.1.149

    Article  Google Scholar 

  80. Viviani P, Stucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum 18(3):603–623

    Article  Google Scholar 

  81. Rauterberg M, Dtwyler M, Sperisen M (1995) From competition to collaboration through a shared social space. In: Blumental B, Gornostaev J, Unger C (eds) Proceedings of the east-west international conference on human-computer interaction (EWHCI95), vol. II, pp 94–101

  82. Hall ET (1968) Proxemics. Curr Anthropol 9:83–108

    Article  Google Scholar 

  83. Mutlu B, Forlizzi J (2008) Robots in organizations: the role of workflow, social, and environmental factors in human-robot interaction. In: Proceedings of the 3rd ACM/IEEE international conference on human-robot interaction (Amsterdam, The Netherlands, March 12—11, 2008). HRI ‘08. ACM, New York, pp 287–294. doi:10.1145/1349822.1349860

  84. Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human–robot interaction. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 5495–5502

  85. Syrdal DS, Dautenhahn K, Walters ML, Koay KL (2008) Sharing spaces with robots in a home scenario-anthropomorphic attributions and their effect on proxemic expectations and evaluations in a live HRI trial. In: Proceedings of the AAAI Fall 2008 symposium “AI in Eldercare: new solutions to old problems”, pp 7–9

  86. Syrdal DS, Walters ML, Koay KL, Dautenhahn K (2008) The role of autonomy and interaction type on spatial comfort in an HRI scenario. In: Robotic helpers: user interaction, interfaces and companions in assistive and therapy robotics. Full-day workshop at the third ACM/IEEE human–robot interaction conference (HRI08). University of Hertfordshire

  87. Torta E, Cuijpers RH, Juola JF (2013) Design of a parametric model of personal space for robotic social navigation. Int J Soc Robot 5(3):357–365. doi:10.1007/s12369-013-0188-9

    Article  Google Scholar 

  88. de Graaf MMA, Allouch SB (2016) The influence of prior expectations of a robot’s lifelikeness on users’ intentions to treat a zoomorphic robot as a companion. Int J of Soc Robot 1(16): doi:10.1007/s12369-016-0340-4

  89. Kidd CD, Breazeal C (2008) Robots at home: understanding long-term human–robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems. IROS 2008, pp 3230–3235

  90. Todd PM, Gigerenzer G (2000) Précis of simple heuristics that make us smart. Behav Brain Sci 23(05):727–741

    Article  Google Scholar 

  91. Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: Fuzzy Systems conference proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International, Vol. 3. IEEE, Piscataway, pp 1281–1286

  92. Thorndike RL (1953) Who belongs in the family? Psychometrika 18(4):267–276

    Article  Google Scholar 

  93. Syrdal DS, Dautenhahn K, Woods S, Walters ML, Koay KL (2006). Doing the right thing wrong: personality and tolerance to uncomfortable robot approaches. In: Proceedings of the IEEE international symposium on robot and human interactive communication (ROMAN), 2006, pp 183–188

  94. Fink J, Bauwens V, Kaplan F, Dillenbourg P (2013) Living with a vacuum cleaning robot. Int J Soc Robot 5(3):389–408. doi:10.1007/s12369-013-0190-2

    Article  Google Scholar 

  95. Syrdal DS, Dautenhahn K, Koay KL, Walters ML, Ho WC (2013) Sharing spaces, sharing lives—the impact of robot mobility on user perception of a home companion robot. In: Proceedings of the 5th international conference on social robotics, vol 8239. Springer, New York, pp 321–330

  96. Gaudiello I, Lefort S, Zibetti E (2015) The ontological and functional status of robots: How firm our representations are? Comput Hum Behav 50(C):259–273. doi:10.1016/j.chb.2015.03.060

    Article  Google Scholar 

  97. Kahn PH Jr, Severson RL, Ruckert JH (2009) The human relation with nature and technological nature. Curr Dir Psychol Sci 18(1):37–42. doi:10.1111/j.1467-8721.2009.01602.x

    Article  Google Scholar 

  98. Jipson J, Gelman S (2007) Robots and rodents: Children’s inferences about living and nonliving kinds. Child Dev 78:1675–1688

    Article  Google Scholar 

  99. Turkle S (2011) Alone together Why we expect more from technology and less from each other. Basic Books, New York

    Google Scholar 

  100. Sabelli AM, Kanda T (2015) Robovie as a Mascot: A qualitative study for long-term presence of robots in a shopping mall. Int J Soc Robot 8(2):211–221. doi:10.1007/s12369-015-0332-9

    Article  Google Scholar 

  101. Alvarez-Santos V, Canedo-Rodriguez A, Iglesias R, Pardo XM, Regueiro CV, Fernandez-Delgado M (2015) Route learning and reproduction in a tour-guide robot. Robot Auton Syst 63:206–213. doi:10.1111/j.1467-8624.2007.01095.x

    Article  Google Scholar 

  102. Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Auton Syst 61(12):1726–1743. doi:10.1016/j.robot.2013.05.007

    Article  Google Scholar 

  103. Rios-Martinez J, Spalanzani A, Laugier C (2014) From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 7(2):137–153. doi:10.1007/s12369-014-0251-1

    Article  Google Scholar 

  104. Carton D, Olszowy W, Wollherr D (2016) Measuring the effectiveness of readability for mobile robot locomotion. Int J Soc Robot 1–21. doi:10.1007/s12369-016-0358-7

  105. Turnwald A, Althoff D, Wollherr D, Buss M (2016) Understanding human avoidance behavior: interaction-aware decision making based on game theory. Int J Soc Robot 8(2):331–351. doi:10.1007/s12369-016-0342-2

    Article  Google Scholar 

  106. Duffy BR (2003) Anthropomorphism and the social robot. Robot Auton Syst 42(3–4):177–190. doi:10.1016/s0921-8890(02)00374-3

    Article  MATH  Google Scholar 

  107. Nomura T, Suzuki T, Kanda T, Han J, Shin N, Burke J, Kata K (2008) What people assume about humanoid and animal-type robots: cross-cultural analysis between Japan, Korea, and the United States. Int J Hum Robot 5(1):25–46. doi:10.1142/s0219843608001297

    Article  Google Scholar 

  108. Mori M (1970) The uncanny valley. Energy 7(4):33–35. doi:10.1007/s12369-016-0342-2

    Google Scholar 

Download references

Acknowledgments

We would like to thank Céleste Boursier-Mougenot and the Abattoirs team for kindly letting us investigate the installation. This study was made possible with the help of Naoko Abe. The research was developed as part of a collaboration with the ENSADLAB Reflective Interaction team (directed by Samuel Bianchini), The Centre Georges Pompidou and the university Paris 8, inside the “Behaviors of Things” research program (program manager: Emanuele Quinz) supported, through the Labex Arts-H2H, by Investissements d’Avenir (ANR-10-LABX-80-01) of the French National Research Agency (ANR). We are especially grateful to Emanuele Quinz and Samuel Bianchini for introducing us to the domain of behavioral artworks in contemporary art, and for giving us the opportunity to develop the study proposed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Levillain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levillain, F., Zibetti, E. & Lefort, S. Interacting with Non-anthropomorphic Robotic Artworks and Interpreting Their Behaviour. Int J of Soc Robotics 9, 141–161 (2017). https://doi.org/10.1007/s12369-016-0381-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-016-0381-8

Keywords

Navigation