Skip to main content
Log in

Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

With the increase of life expectancy and population average age, heart valve diseases have become more frequent, representing an always increasing percentage among cardiovascular diseases, which are the predominant cause of death in the western country. For this reason, research activities within such a context and, in particular, computer-based predictions of valve behavior are strongly motivated. Consequently, the study of the tissue mechanical response and the constitutive relationships for modeling material behavior represent crucial a aspect to be investigated in order to perform realistic simulations. The mechanical response of the aortic valve tissue depends on the contribution, composition, and interaction of different constituents, such as collagen fibers and elastin network. Accordingly, constitutive laws including non-linearity and anisotropy are necessary. Clearly, the complexity of a constitutive model increases more as it takes into account the histological structure of the tissue. Numerous constitutive models have been developed to describe arterial tissue, but relatively few models have been calibrated specifically for the aortic valve. This study focuses on the investigation of constitutive models so far proposed in the literature which could be suitable to capture the mechanical behavior of the aortic valvular tissue. To make the right choice, the comparison between these constitutive models is done in terms of the fitting quality achieved with respect to human aortic valve data proposed in the literature. For this purpose, an optimization technique based on the nonlinear least square method is used. The obtained material parameters could be later used in finite element analysis adopted, in this last decade, as an innovative approach to support the operation planning procedure and the design of artificial grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yacoub MH, Takkenberg JJ (2005) Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med 2:60–61

    Article  Google Scholar 

  2. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases:a population-based study. Lancet 368:1005–1011

    Article  Google Scholar 

  3. Otto CM (2006) Valvular aortic stenosis: diseases severity and timing of intervention. J Am Coll Cardiol 47:2141–2151

    Article  Google Scholar 

  4. Filová E, Straka F, Miřejovský T, Mašín J, Bačáková L (2009) Tissue-engineered heart valves. Physiol Res 58 (Suppl 2):S141–S158

    Google Scholar 

  5. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (2000) Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J Thorac Cardiovasc Surg 119:753–763

    Article  Google Scholar 

  6. Gnyaneshwar R, Kumar KR, Balakrishnan RK (2002) Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg 73:1122–1129

    Article  Google Scholar 

  7. Soncini M, Votta E, Zinicchino S, Burrone V, Mangini A, Lemma M, Antona A, Redaelli C (2009) Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med Eng Phys 31:234–243

    Article  Google Scholar 

  8. Auricchio F, Conti M, Morganti S (2011) Finite element analysis of aortic root dilation: a new procedure to reproduce pathology based on experimental data. Comput Methods Biomech Biomed Eng

  9. Gupta BS, Kasyanov VA (1997) Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res 34:341–349

    Article  Google Scholar 

  10. Demiray H (1972) A note on the elasticity of soft biological tissues. J Biomech 5:309–311

    Article  Google Scholar 

  11. Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237:H620–H631

    Google Scholar 

  12. Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105:268–274

    Article  Google Scholar 

  13. Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypotesis for arterial mechanics. Biophys J 20:7–17

    Google Scholar 

  14. Weinberg EJ, Shahmirzadi D, Mofrad MR (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9:373–387

    Article  Google Scholar 

  15. Holzapfel GA, Stadler TC, Gasser M. (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21:441–463

    Article  MATH  Google Scholar 

  16. Rowe AJ, Finlay HM, Canham PB (2003) Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J Vasc Res 40:406415

    Article  Google Scholar 

  17. Cacho F, Elbischger PJ, Rodrguez JF, Doblar M, Holzapfel GA (2007) A constitutive model for fibrous tissues considering collagen fiber crimp. Int J Non Linear Mech 42:391-402

    Article  Google Scholar 

  18. Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, Zheng J, Woodard PK, Yuan C (2009) Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses. An in vivo mri-based 3d fluid-structure interaction study. Stroke 40:3258–3263

    Article  Google Scholar 

  19. Maceri F, Marino M, Vairo G (2010) A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J Biomech 43:355-363

    Article  Google Scholar 

  20. Humphrey JD (2003) Continuum biomechanics of soft biological tissues. R Soc 459:3–46

    MathSciNet  MATH  Google Scholar 

  21. Spencer AJM (1982) Deformation of fiber-reinforced materials. Oxford University Press, Oxford

    Google Scholar 

  22. Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer, New York

    MATH  Google Scholar 

  23. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12

    Article  Google Scholar 

  24. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interf 3:15–35

    Article  Google Scholar 

  25. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J Bioeng 122:23–30

    Google Scholar 

  26. Sacks MS, Sun W (2003) Multiaxial mechanical behavior of biological materials. Ann Rev Biomed Eng 5:251–284

    Article  Google Scholar 

  27. Driessen NJB, Bouten CVC, Baaijens FPT (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Bioeng 127:329–336

    Google Scholar 

  28. Humphrey JD, Yin FCP (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain–energy function. J Biomech Eng 109:298–304

    Article  Google Scholar 

  29. Humphrey JD, Yin FCP (1989) Biomechanical experiments on excised myocardium: Theoretical considerations. J Biomech 22:377–383

    Article  Google Scholar 

  30. May-Newman K, Yin FCP (1995) Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am Physiol Soc 269:H1319–H1327

    Google Scholar 

  31. May-Newman K, Yin FCP (1998) A constitutive law for mitral valve tissue. J Bioeng 120:38–47

    Google Scholar 

  32. Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J Biomech Eng 115:481-488

    Article  Google Scholar 

  33. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  34. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (2000) Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann Thorac Surg 69:1851–1857

    Article  Google Scholar 

  35. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (2001) Mechanisms of aortic valve incompetence: finite-element modeling of marfan syndrome. J Thorac Cardiovas Surg 122:946–954

    Article  Google Scholar 

  36. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (1998) Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng 26:534–545

    Article  Google Scholar 

  37. Beck A, Thubrikar MJ, Robicsek F (2001) Stress analysis of the aortic valve with and without the sinuses of valsalva. JHVD 10:1–11

    Google Scholar 

  38. Katayama S, Umetani N, Sugiura S, Hisada T (2008) The sinus of valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Heart Valve Dis 136:1528–1535

    Google Scholar 

  39. Missirlis YF, Chong M. (1978) Aortic valve mechanics—part i: material properties of natural porcine aortic valves. J Bioeng 2:287–300

    Google Scholar 

  40. Sauren AAHJ, van Houta MC, van Steenhovena AA, Veldpausa FE, Janssena JD (1983) The mechanical properties of porcine aortic valve tissues. J Biomech 16:327–337

    Article  Google Scholar 

  41. May-Newman K, Lam C, Yin FCP (2009) A hyperelastic constitutive law for aortic valve tissue. J Bioeng 131:1–7

    Google Scholar 

  42. Adamczyk MM, Vesely I (2002) Characteristics of compressive strains in porcine aortic valves cusps. J Heart Valve Dis 11:75–83

    Google Scholar 

  43. Merryman WD, Engelmayr GC, Liao J, Sacks MS (2006) Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Prog Pediatr Cardiol 21:153–160

    Article  Google Scholar 

  44. Sauren AAHJ, Kuijpers W, van Steenhovena AA, Veldpaus FE (1980) Aortic valve histology and its relation with mechanics–preliminary report. J Biomech 13:97–104

    Article  Google Scholar 

  45. Gundiah N, Kam K, Matthews PB, Guccione J, Dwyer HA, Saloner D, Chuter TAM, Guy TS, Ratcliffe MB, Tseng EE (2008) Asymmetric mechanical properties of porcine aortic sinuses. Ann Thorac Surg 85:1631–1638

    Article  Google Scholar 

  46. Matthews PB, Azadani AN, Jhun C, Ge L, Guy TS, Guccione JM, Tseng EE (2010) Comparison of porcine pulmonary and aortic root material properties. Ann Thorac Surg 89:1981–1989

    Article  Google Scholar 

  47. Sands MP, Rittenhouse EA, Mohri H, Merendino KA (1969) An anatomical comparison of human, pig, calf and sheep aortic valves. Ann Thorac Surg 8:407–414

    Article  Google Scholar 

  48. Balasundari R, Gupta R, Sivasubramanian V, Chandrasekaran R, Arumugam S, Cherian KM, Guhathakurta S. (2007) Complete microbe free processed porcine xenograft for clinical use. Indian J Thorac Cardiovasc Surg 23:240–245

    Article  Google Scholar 

  49. Nicosia MA, Kasalko JS, Cochran RP, Einstein DR, Kunzelman KS (2002) Biaxial mechanical properties of porcine ascending aortic wall tissue. J Heart Valve Dis 11:680–687

    Google Scholar 

  50. Sim EKW, Muskawad S, Lim S, Yeo JH, Lim KH, Grignani RT, Durrani G, Lau A, Duran C (2003) Comparison of human and porcine aortic valves. Clin Anat 16:193–196

    Article  Google Scholar 

  51. Martin T, Pham C, Sun W (2010) Difference in mechanical properties between human and porcine aortic root. In: Proceedings of the annual international conference of the IEEE

  52. Martin C, Pham T, Sun W (2011) Significant differences in the material properties between aged human and porcine aortic tissues. Eur J Cardiothorac Surg 40:28–34

    Article  Google Scholar 

  53. Martin C, Sun W (2012) Biomechanical characterization of aortic valve tissue in humans and common animal models. J Biomed Mater Res Part A 100A:1591–1599

    Article  Google Scholar 

  54. Hokken RB, Bartelings MM, Bogers AJ, Gittenberger-DeGroot AC (1997) Morphology of the pulmonary and aortic roots with regard to the pulmonary autograft procedure. J Thorac Cardiovasc Surg 113:453–461

    Article  Google Scholar 

  55. Sacks MS, Smith MS, Hiester ED (1998) The aortic valve microstructure: Effect of transvalvular pressure. J Biomed Mater Res 41:131–141

    Article  Google Scholar 

  56. Misfeld M, Sievers H (2007) Heart valve macro- and microstructure. Philos Trans R Soc B 362:1421–1436

    Article  Google Scholar 

  57. Taylor PM (2007) Biological matrices and bionanotechnology. Philos Trans R Soc B 362:1313–1320

    Article  Google Scholar 

  58. Sacks MS, Merryman WD, Schmidt DE (2009) On the biomechanics of heart valve function. J Biomech 42:1804–1824

    Article  Google Scholar 

  59. Gambarin FI, Massetti M, Dore R, Saloux E, Favalli V, Arbustini V (2010) The aortic root. In: Saremi F, Achenbach S, Arbustini E, Narula J (eds). Revisiting cardiac anatomy: a computed-tomography-based Atlas and reference. Wiley-Blackwell, Oxford

    Google Scholar 

  60. Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Ann Rev Physiol 73:41–418

    Article  Google Scholar 

  61. Bashey RI, Torii S, Angrist A (1967) Age-related collagen and elastin content of human heart valves. J Gerontol 22:203–208

    Article  Google Scholar 

  62. Ferrans VJ, Hilbert SL, Tomita T, Jones M, Robert WC (1988) Morphology of collagen in bioprosthetic heart valves. In: Nimni ME, Boca Raton FL (eds) Collagen 3. CRC Press, pp 145–189

  63. Scott MJ, Vesely I (1996) Morphology of porcine aortic valve cusp elastin. J Heart Valve Dis 5:464–471

    Google Scholar 

  64. Schriefl AJ, Regitnig P, Pierce DM, Holzapfel GH (2011) Layer-specific distributed collagen fiber orientations in human arteries, from thoracic aorta to common iliac. In: Proceedings of the ASME 2011 summer bioengineering conference, Farmington, Pennsylvania, USA, June 22–25, pp 1–2

  65. Clark RE, Butterworth GAM (1971) Characterization of the mechanics of human aortic and mitral valve leaflets. Surg Forum 22:134–136

    Google Scholar 

  66. Swanson WM, Clark RE (1974) Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res 22:871–882

    Article  Google Scholar 

  67. Bairati A, De Biasi S (1981) Presence of a smooth muscle system in aortic valve leaflets. Anat Embryol (Berl) 161:329–340

    Article  Google Scholar 

  68. Vesely I, Noseworthy R (1992) Micromechanics of the fibrosa and the ventircularis in aortic valve leaflets. J Biomech 25:101–113

    Article  Google Scholar 

  69. Sacks MS, Smith DB, Hiester ED (1997) A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 25:678–689

    Article  Google Scholar 

  70. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128

    Article  MATH  Google Scholar 

  71. Merodio J, Ogden RW (2003) Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int J Solids Struct 40:4707–4727

    Article  MathSciNet  MATH  Google Scholar 

  72. Merodio J, Ogden RW (2005) On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech Res Commun 32:290–299

    Article  MathSciNet  MATH  Google Scholar 

  73. Merodio J, Ogden RW (2006) The influence of the invariant i8 on the stress-deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids. Int J Non-linear Mech 41:556–563

    Article  MATH  Google Scholar 

  74. Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids a continuum mechanical framework. Math Mech Solids 14:474–489

    Article  Google Scholar 

  75. Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: I. a new functional form. J Biomech Eng 112:333–339

    Article  Google Scholar 

  76. Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. constitutive modelling and finite element implementation. Int J Numer Methods Eng 71:987–1008

    Article  MathSciNet  MATH  Google Scholar 

  77. Weinberg EJ, Kaazempur-Mofrad MR (2006) A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. J Biomech 39:1557–1561

    Article  Google Scholar 

  78. Prot V, Skallerud B, Sommer G, Holzapfel GA (2010) On modelling and analysis of healthy and pathological human mitral valves: two case studies. J Mech Behav Biomed Mater 3:167–177

    Article  Google Scholar 

  79. Holzapfel GA, Weizsäcker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28(4):377–392

    Article  Google Scholar 

  80. Stålhand J, Klarbring A, Karlsson M (2004) Towards in vivo aorta material identification and stress estimation. Biomech Model Mechanobiol 2:169–186

    Article  Google Scholar 

  81. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:H2048–H2058

    Article  Google Scholar 

  82. Stålhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8:141–148

    Article  Google Scholar 

  83. Konig K, Schenke-Layland K, Riemann I, Stock UA (2005) Multiphoton autofluorescence imaging of intratissue elastic fibers. Biorheology 26:495–500

    Google Scholar 

  84. Schenke-Layland K, Riemann I, Stock UA, Konig K (2005) Morphology of porcine aortic valve cusp elastin. J Biomed Opt 10:024017

    Article  Google Scholar 

  85. Stradins P, Lacis I, Ozolanta R, Burina B, Ose V, Feldmane L, Kasyanov V (2004) Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardiothoracic Surg 26:634–639

    Article  Google Scholar 

  86. Milnor WR (1989) Hemodynamics. Williams & Wilkins, Baltimore

    Google Scholar 

  87. Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Bioeng 121:551–555

    Google Scholar 

  88. Holzapfel GA, Sommer G (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126:657–665

    Article  Google Scholar 

  89. Azadani AN, Chitsaz S, Matthews PB, Jaussaud N, Leung T, Tsinman J, Ge V, Tseng EE (2012) Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann Thorac Surg 93:87–94

    Article  Google Scholar 

  90. Stella JA, Sacks MS (2007) On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Bioeng 129:757–766

    Google Scholar 

Download references

Acknowledgements

The support of the Cariplo Foundation through the project number n.2009.2822 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ferrara.

A stress components

A stress components

1.1 A.1 Stresses in aortic leaflets

Aortic leaflet tissue is a material reinforced with a single class of fibers circularly oriented. We select a base vectors (e 1,  e 2,  e 3) with the plane e 1e 2 coincident with the plane of the specimen. The unit vector e 3 is normal to the sheet plane. In the plane e 1e 2, the unit vector e 1 lies coaxial with the mean fiber direction a 0 (i.e., the circumferential direction) while the unit vector e 2 = e 3 × e 1. We assume the one-fiber family embedded in the plane e 1e 2, so that the fiber direction is a 0e 1, in the reference configuration, and a = F e 1, in the current configuration.

In terms of the principal stretches, λ1, λ2, λ3, which satisfy the incompressibility constraint λ3 = (λ1λ2)−1, the invariants I 1 and I 4 are given by:

$$ I_1=\lambda_1^2+\lambda_2^2+(\lambda_1\lambda_2)^{-2}, \quad\quad I_4=\lambda_1^2. $$
(13)

The non-zero components of the Cauchy stress tensor, σ11 and σ22, are given by:

$$ \sigma_{11}= 2{\Uppsi}_1\left[\lambda_1^2-(\lambda_1\lambda_2)^{-2}\right] + 2{\Uppsi}_4\lambda_1^2, \quad \quad \sigma_{22}= 2{\Uppsi}_1\left[\lambda_2^2-(\lambda_1\lambda_2)^{-2}\right]. $$
(14)

Noting that the Lagrange multiplier \(p=2{\Uppsi_1}(\lambda_1\lambda_2) ^{-2}\) has been determined from the plain stress condition σ3 = 0.

In the particular case of uniaxial tensile test, the stress σ22 = 0, then, it follows from Eq. (14)2 that λ2 = λ −1/21 and from Eq. (14)1 that the only one non-zero stress component is \(\sigma_{11}=2{\Uppsi}_1\left[ \lambda_1^2-\lambda_1^{-1}\right]+2{\Uppsi}_4\lambda_1^2\).

1.2 A.2 Stresses in aortic sinuses

Aortic sinuses tissue is a material reinforced with two class of fibers symmetrically oriented with respect to the circumferential direction at angles ±ϑ in the reference configuration.

We select a base vectors (e 1e 2e 3) so that the e 1e 2 plane coincides with the sheet plane where the fibers are embedded and the unit vector e 3 is normal to this plane. Hence, in the reference configuration, the fiber directions are: \({\bf a}_0= \cos\vartheta{\bf e}_1+\sin\vartheta{\bf e}_2\) and \({\bf b}_0=\cos\vartheta{\bf e}_1-\sin \vartheta{\bf e}_2, \) whereas their spatial counterparts become: \({\bf a}=\lambda_1 \cos\vartheta{\bf e}_1+\lambda_2\sin\vartheta{\bf e}_2\) and \({\bf b}=\lambda_1\cos \vartheta{\bf e}_1-\lambda_2\sin\vartheta{\bf e}_2\), respectively.

In terms of the principal stretches, λ1,  λ2,  λ3 = (λ1λ2)−1, the invariants I 1 I 4 and I 6 are given by:

$$ I_1=\lambda_1^2+\lambda_2^2+(\lambda_1\lambda_2)^{-2}, \quad\quad I_4=I_6=\lambda_1^2\cos^2\vartheta+\lambda_2^2\sin^2\vartheta. $$
(15)

Assuming that the to fiber classes are mechanically equivalent such that \({\Uppsi}_1={\Uppsi}_2\), the non-zero components of the Cauchy stress tensor, σ11 and σ22, are given by:

$$ \sigma_{11}= 2{\Uppsi}_1\left[\lambda_1^2-(\lambda_1\lambda_2)^{-2}\right] + 2{\Uppsi}_4\lambda_1^2\cos^2\vartheta, \quad\quad \sigma_{22}= 2{\Uppsi}_1\left[\lambda_2^2-(\lambda_1\lambda_2)^{-2}\right] + 2{\Uppsi}_4\lambda_1^2\sin^2\vartheta. $$
(16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auricchio, F., Ferrara, A. & Morganti, S. Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. Ann. Solid Struct. Mech. 4, 1–14 (2012). https://doi.org/10.1007/s12356-012-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-012-0028-x

Keywords

Navigation