Skip to main content
Log in

Physico-chemical, Antioxidant and Sensory Attributes of Ginger (Zingiber officinale) Enriched Jaggery of Different Sugarcane Varieties

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Zingiber officinale enriched jaggery of three sugarcane varieties (Co 86032, Co 419 and Co 62175) at 0.05, 0.1 and 0.2 % Z. officinale concentrations were evaluated for physico-chemical properties, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and reducing power ability, in addition to sensory evaluation by quantitative descriptive analysis method. Physico-chemical analysis of Z. officinale enriched jaggery revealed no significant difference between test and control except for total phenolics, tannins and flavonoids that indicated a dose dependent increase for all the varieties. A positive correlation (r = 0.922, 0.883 and 0.881) was observed between total phenolics and antioxidant activity of Z. officinale enriched jaggery for all the test varieties. Results of DPPH radical scavenging ability and reducing power potential of Z. officinale enriched jaggery showed an increased antioxidant activity. An EC50 of 3.098, 3.076 and 3.038 mg/mL was observed in 0.2 % Z. officinale enriched jaggery prepared from Co 86032, Co419 and Co 62175, respectively. Sensory evaluation of Z. officinale enriched jaggery for different attributes indicated significant (P > 0.05) difference between control and enriched jaggery of different sugarcane varieties for color, texture, hardness and taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BHT:

Butylated hydroxytoluene

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

QDA:

Quantitative descriptive analysis

BHA:

Butylated hydroxyanisole

TBHQ:

tert-Butyl hydroquinone

TCA:

Trichloroacetic acid

BSA:

Bovine serum albumin

GAE:

Gallic acid equivalent

QE:

Quercetin equivalent

TAE:

Tannic acid equivalent

EC50 :

Effective concentration for 50 % inhibition

References

  • Ahmed, R.S., V. Seth, S.T. Pasha, and B.D. Banerjee. 2000. Influence of dietary ginger (Zingiber officinales Rosc.) on oxidative stress induced by malathion in rats. Food and Chemical Toxicology 38: 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Anwaar, S. I., and J. Singh. 2010. Modified pans for open pan jaggery furnace. Operation Manual No. AE/10/01, Lucknow: Indian Institute of Sugarcane Research.

  • Beuchat, L.R. 1987. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. Journal of Food Protection 46: 135–141.

    Google Scholar 

  • Beuchat, L.R. 1981. Microbial stability as affected by water activity. Cereal Foods World 26: 345–349.

    Google Scholar 

  • Blios, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200.

    Article  Google Scholar 

  • Botterweck, A.A.M., H. Verhagen, R.A. Goldbohm, J. Kelinjans, and P.A.V.D. Brandt. 2000. Intake of butylatedhydroxyanisole and butylatedhydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands cohort study. Food and Chemical Toxicology 38: 599–605.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C., M. Yang, H. Wen, and J. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178–182.

    CAS  Google Scholar 

  • Cutler, H.G. 1995. Natural product flavor compounds as potential antimicrobials, insecticides, and medicinals. Agro-Food-Industry Hi-Tech 6: 19–23.

    CAS  Google Scholar 

  • Damodaran, S. 2000. Aminoacidos, peptidos y proteinas. In: Fenemma, O. (ed.). Quimica de alimentos. 2 edn. Espana: Acribia.

  • Duarte-Almeida, J.M., A.V. Novoa, A.F. Linares, F.M. Lajolo, and M.I. Genovese. 2006. Antioxidant activity of phenolics compounds from sugarcane (Saccharum officinarum L.) juice. Plant Foods for Human Nutrition 61: 187–192.

    Article  CAS  Google Scholar 

  • Ecuadorian Technical Standard NTE INEN 2 332. 2002. Panela Granulada Requisitos (p. 2) Quito-Ecuador.

  • El-Abasy, M., M. Motobu, K. Shimura, K.J. Na, C.B. Kang, K. Koge, T. Onodera, and Y. Hirota. 2002. Immunostimulating and growth promoting effects of sugarcane extracts (SCE) in chickens. Journal of Veterinary Medical Science 64: 1061–1063.

    Article  PubMed  Google Scholar 

  • Guerra, M.J., and M.V. Mujica. 2010. Physical and chemical properties of granulated cane sugar “panelas”. Cienciae Tecnologia de Alimentos, Campinas 30: 250–257.

    Google Scholar 

  • Harborne, J., and C. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481–504.

    Article  CAS  PubMed  Google Scholar 

  • Harish Nayaka, M.A., U.V. Sathisha, M.P. Manohar, K.B. Chandrashekar, and M.D. Shylaja. 2009. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry 115: 113–118.

    Article  CAS  Google Scholar 

  • Jagannadha Rao, P.V.K., D. Madhusweta, and S.K. Das. 2007. Jaggery—A Traditional Indian Sweetener. Indian Journal of Traditional Knowledge 6: 95–102.

    Google Scholar 

  • Helrich, Kenneth. 1990. Official methods of analysis of the Association of Official Analytical Chemists. 15th eds, 777–781. Washington DC.

  • Chand, Khan, Anupama Singh, and A.K. Verma. 2011. Quality evaluation of jaggery chocolates under various storage conditions. Sugar Tech 13: 150–155.

    Article  CAS  Google Scholar 

  • Ledon, N., A. Casaca, V. Rodriguez, J. Cruz, R. Gonzalez, Z. Tolon, M. Cano, and E. Rojas. 2003. Antiinflammatory and analgesic effects of a mixture of fatty acids isolated and purified from sugarcane wax oil. Planta Medica 69: 367–369.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, D., S.R. Tudu, Mitra, and G.C. De. 2006. Effect of common packing material on keeping quality of sugarcane jaggery during monsoon season. Sugar Tech 8: 2–3.

    Article  Google Scholar 

  • Masuda, Y., H. Kikuzaki, M. Hisamoto, and N. Nakatani. 2004. Antioxidant properties of gingerol related compounds from ginger. BioFactors 21: 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Meir, S., J. Kanner, B. Akiri, and S.P. Hadas. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry 43: 1813–1817.

    Article  CAS  Google Scholar 

  • Molina, V., M.L. Arruzazabala, D. Carbajal, R. Mas, and S. Valses. 2000. Antiplatelet and antithrombotic effect of D-003. Pharmacological Research 42: 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Nakatani, N. 1994. Antioxidative and antimicrobial constituents of herbs and spices. In Spices, herbs and edible fungi, ed. G. Charalambous, 251–271. New York: Elsevier Science.

    Google Scholar 

  • Nicoll, R., and M.Y. Henein. 2009. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? International Journal of Cardiology 131: 408–409.

    Article  PubMed  Google Scholar 

  • Singh, Nrashant, D. Kumar, S. Raisuddin, and P.S. Anand. 2008. Genotoxic effects of arsenic: Prevention by functional food-Jaggery. Cancer Letters 268: 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Okabe, T.T. Toda, M. Inafuku, K. Wada, H. Iwasaki, and H. Oku. 2009. Antiatherosclerotic functions of kokuto, Okinawan non-centrifuged cane sugar. Journal of Agricultural and Food Chemistry 57: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Olayinka, A.A., and I.O. Anthony. 2010. Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary and Alternative Medicine 10: 21–25.

    Article  Google Scholar 

  • Prasad, P., P. Praveen Kumar, K. Satyavathi, and M.C. Prabhakar. 2010. Comparatives studies on anthelmintic activity of natural sweeteners. Research Journal of Pharmaceutical, Biological and Chemical Sciences 1: 510–514.

    Google Scholar 

  • Sahu, A.P., and A.K. Saxena. 1994. Enhanced translocation of particles from lungs by jaggery. Environmental Health Perspectives 102: 211–214.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shukla, Y., and M. Singh. 2007. Cancer preventive properties of ginger: A brief review. Food Chemistry and Toxicology 45: 683–690.

    Article  CAS  Google Scholar 

  • Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178.

    CAS  Google Scholar 

  • Stone, H., J. Sidel, S. Oliver, A. Woolsey, and R.C. Singleton. 1974. Sensory evaluation by quantitative descriptive analysis. Food Technology 28: 24–34.

    Google Scholar 

  • Troller, J.A., and J.H.B. Christian. 1978. Water activity and food. New York: Academic Press.

    Google Scholar 

  • Yamaguchi, T., H. Takamura, T. Matoba, and J. Terao. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry 62: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  • Yen, G.C., and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry 43: 27–32.

    Article  CAS  Google Scholar 

  • Yen, G.C., P.D. Duh, and C.L. Tsai. 1993. The relationship between antioxidant activity and maturity of peanut hulls. Journal of Agricultural and Food Chemistry 41: 67–70.

    Article  CAS  Google Scholar 

  • Nakasone, Yoko, Kensaku Takara, Kouji Wada, Junichi Tanaka, Seiichi Yogi, and Nobuji Nakatani. 1996. Antioxidative compounds isolated from Kokuto, Non-centrifugal cane sugar. Bioscience, Biotechnology, and Biochemistry 60: 1714–1716.

    Article  CAS  Google Scholar 

  • Young, H.Y., Y.L. Luo, H.Y. Cheng, W.C. Hsieh, J.C. Liao, and W.H. Peng. 2005. Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology 96: 207–210.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Swamy Gowda, Sugarcane Breeder, Zonal Agricultural Research Station, V.C. Farm, Mandya, Karnataka, India for providing sugarcanes of different varieties for our study. Miss C. Vinutha acknowledges the Department of Science and Technology, New Delhi, India for awarding the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Harish Nayaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harish Nayaka, M.A., Vinutha, C., Sudarshan, S. et al. Physico-chemical, Antioxidant and Sensory Attributes of Ginger (Zingiber officinale) Enriched Jaggery of Different Sugarcane Varieties. Sugar Tech 17, 305–313 (2015). https://doi.org/10.1007/s12355-014-0328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0328-z

Keywords

Navigation