Skip to main content
Log in

Direct Sucrose Hydrolysis in Sugarcane Juice with Immobilized Invertase: Multi-response Optimization Using Desirability Function on Conversion and Reactor Volumetric Productivity

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In this work, the hydrolysis of sucrose from clarified sugar cane juice and further purified juice was studied in a tubular reactor packed with immobilized invertase in calcium alginate. An analysis of response surface for the desirability function of conversion to glucose and fructose (Yp/s) and reactor volumetric productivity (Qp) in a Box–Behnken (incomplete 34) experimental model for sucrose concentration in the juice, flow rate, temperature and pH value (pH), was conducted. The results showed that the combined process of purification by activated carbon and ultrafiltration produced a clarified and purified juice with Pol of 16.79 %, 18.95 °Brix, 7.23 of pH and 175 ICUMSA color units. Trapped invertase showed maximum activity at pH 4.0 and 50 °C, with Km and Vmax of 39.137 mM and 0.5266 mg total reducing sugar (TRS)/min mL, respectively. The desirability function for clarified juice presented optimum values of 75.18 % for TRS conversion and 2.809 g L−1 min−1 of volumetric productivity at 113.79 g L−1 of sucrose in the juice, 0.82 mL min−1 flow rate, 32.0 °C and 4.3 pH units. For purified juice, these values, were: 76.69 % of conversion and 2.88 g TRG L−1 min−1 for volumetric productivity at 120.9 g L−1, 0.78 mL min−1, 31.0 °C and 3.9 pH units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arruda, L.M.O., and M. Vitolo. 1999. Characterization of invertase entrapped into calcium alginate beads. Applied Biochemistry and Biotechnology 81(1): 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Bowski, L., R. Saini, Y.D. Ryu, and R.W. Vieth. 1971. Kinetic modeling of the hydrolysis of sucrose by invertase. Biotechnology and Bioengineering 13(5): 641–656.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anaytical Biochemistry 72: 248–254.

    Article  CAS  Google Scholar 

  • Chaplin, M., and C. Bucke. 1990. Enzyme technology. New York: Cambridge University Press.

    Google Scholar 

  • Chen, C.P. 1991. Manual del azúcar de caña para fabricantes de azúcar de caña y químicos especializados. Mexico: Limusa.

    Google Scholar 

  • Davis, S.B. 2001. The chemistry color removal. Proceedings of the South African Sugar Technologists’ Association 75: 328–336.

    Google Scholar 

  • Derringer, G., and R. Suich. 1980. Simultaneous optimization of several response variables. Journal of Quality Technology 12: 214–219.

    Google Scholar 

  • Hinkova, A., Z. Bubník, P. Kadlec, and J. Pridal. 2002. Potentials of separation membranes in the sugar industry. Separation and Purification Technology 26: 101–110.

    Article  CAS  Google Scholar 

  • Honig, P. 1963. Principles of sugar technology, vol. III. In ed. P. Honig. Nueva York: Elsevier Publishing Co.

  • ICUMSA. 2006. ICUMSA Libro de Métodos (2005). International Commission for Uniform Methods of Sugar Analysis. Berlin: Verlag Dr. Albert Bartens KG.

  • Kierstan, M., and C. Buckle. 1977. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnology and Bioengineering 19: 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Kotwal, S.M., and V. Shankar. 2009. Immobilized invertase. Biotechnology Advances 27: 311–322.

    Article  CAS  PubMed  Google Scholar 

  • Kurup, A.S., H.J. Subramani, K. Hidajat, and A.K. Ray. 2005. Optimal design and operation of SMB bioreactor for sucrose inversion. Engineering Journal 108: 19–33.

    CAS  Google Scholar 

  • Meena, K., and T.K. Raja. 2006. Immobilization of Saccharomyces cerevisiae cells by gel entrapment using various metal alginates. World Journal of Microbiology and Biotechnology 22: 651–652.

    Article  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428.

    Article  CAS  Google Scholar 

  • Montes-Horcasitas, M.C., and I. Magaña-Plaza. 2002. Enzimas con aplicación industrial. Avance y Perspectiva 21: 279–282.

    Google Scholar 

  • Montgomery, D. 2003. Diseño y análisis de experimentos. Mexico: Limusa.

    Google Scholar 

  • Pancoast, H.M., and W.R. Junk. 1980. Handbook of sugars, 2nd ed. Westport Conn: AVI Publishing Company Inc.

    Google Scholar 

  • Prodanovic, R., S. Jovanovic, and Z. Vujcic. 2001. Immobilization of invertase on a new type of macroporous glycidyl methacrylate. Biotechnology Letters 23: 1171–1174.

    Article  CAS  Google Scholar 

  • Qureshi, K., I. Bhatti, R. Kazi, and K.A. Ansari. 2008. Physical and chemical analysis of activated carbon prepared from sugarcane bagasse and use for sugar decolorisation. International Journal of Natural Sciences and Engineering 1(3): 145–149.

    CAS  Google Scholar 

  • Raga-Carbajal, E. 2010. Inmovilización y propiedades cinéticas de la enzima invertasa en alginato de calcio, Bachelor Thesis, Universidad Veracruzana, Xalapa, Ver., México.

  • Rebros, M., M. Rosenberg, Z. Mlichova, and L. Kristofikova. 2007. Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry 102: 784–787.

    Article  CAS  Google Scholar 

  • Regan, M.R., and I.A. Banerjee. 2007. Immobilization of invertase in germania matrix and a study of its enzymatic activity. Journal of Sol–Gel Science and Technology 43: 27–33.

    Article  CAS  Google Scholar 

  • Santos-Moreno, A. 1995. Química y bioquímica de alimentos. Chapingo: UACH.

    Google Scholar 

  • Smidsrod, O., and G. Skjak-Braek. 1990. Alginate as immobilization matrix for cells. Trends in Biotechnology 8: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Solís-Fuentes, J.A., K. Calleja-Zurita, and M.C. Durán-de-Bazúa. 2010. Desarrollo de jarabes fructosados de caña de azúcar a partir de guarapo. Tecnología Ciencia Educación (IMIQ) 25: 53–62.

    Google Scholar 

  • Solís-Fuentes, J.A., L.F. Guzmán-Flores, and M.C. Durán-de-Bazúa. 2013. Kinetic behavior of invertase in the hydrolysis of sucrose in complex sugarcane juice. International Sugar Journal 115: 488–495.

    Google Scholar 

  • StatSoft, Inc. 2004. STATISTICA (data analysis software system) version 7. www.statsoft.com.

  • Sun, W.N. 2012. [Online] In Biochemical Engineering Laboratory. Department of Chemical and Biomolecular Engineering. http://www.eng.umd.edu/~nsw/ench485.htm. Accessed 17 Jan 2012.

  • Tanriseven, A., and S. Doğan. 2001. Immobilization of invertase within calcium alginate gel capsules. Process Biochemistry 36(11): 1081–1083.

    Article  CAS  Google Scholar 

  • Tomotani, E.J., and M. Vitolo. 2007. Production of high-fructose syrup using immobilized invertase in a membrane reactor. Journal of Food Engineering 80: 662–667.

    Article  CAS  Google Scholar 

  • Vu, T.K.H., and V.V.M. Le. 2008. Biochemical studies on the immobilization of the enzyme invertase (EC.3.2.1.26) in alginate gel and its kinetics. ASEAN Food Journal 15(1): 73–78.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fondo Mixto CONACYT-Gobierno del Estado de Veracruz, for the support to carry out this work under Project 37672. We also acknowledge the support from Zucarmex S. A. de C. V. for the donation of sugarcane juice samples from Ingenio Mahuixtlán, S. A. de C. V. and to Mr. Warren Haid from the Universidad Veracruzana for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Solís-Fuentes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Fuentes, J.A., Raga-Carbajal, E. & Durán-de-Bazúa, M.C. Direct Sucrose Hydrolysis in Sugarcane Juice with Immobilized Invertase: Multi-response Optimization Using Desirability Function on Conversion and Reactor Volumetric Productivity. Sugar Tech 17, 266–275 (2015). https://doi.org/10.1007/s12355-014-0320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0320-7

Keywords

Navigation