Skip to main content

Advertisement

Log in

Analysis of the Clinical Features and Imaging Findings of Pontocerebellar Hypoplasia Type 2D Caused by Mutations in SEPSECS Gene

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Pontocerebellar hypoplasia type 2D (PCH2D) caused by SEPSECS gene mutations is very rare and only described in a few case reports. In this study, we analyzed the clinical features and imaging findings of these individuals, so as to provide references for the clinic. We reported a case of PCH2D caused by a new complex heterozygote mutation in SEPSECS gene, and reviewed the literatures to summarize the clinical features and imaging findings and compare the differences between early-onset patients (EOPs) and late-onset patients (LOPs). Of 23 PCH2D patients, 19 cases were early-onset and 4 cases were late-onset, with average ages of 4.1 ± 4.0 years and 21.8 ± 9.4 years, females were more prevalent (14/19). EOPs mainly distributed in Arab countries (10/14) and Finland (4/14), while LOPs in East Asia (3/3). EOPs develop severe initial symptoms at the average age of 4.1 ± 7.8 months or shortly after birth, while LOPs experienced mild developmental delay in infancy. Microcephaly (10/11), intellectual disability (10/11), decreased motor function (10/11), and spastic or dystonic quadriplegia (8/10) were the common clinical features of EOPs and LOPs. EOPs also presented with visual impairment (5/7), seizures (4/7), neonatal irritability/opisthotonus (3/7), tremors/myoclonus (3/7), dysmorphic features (3/7), and other symptoms. EOPs were characterized by cerebellar symptoms (4/4). Magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy followed by less pronounced cerebral atrophy, and there was no pons atrophy in LOPs. Most patients of PCH2D were severe early-onset, and a few were late-onset with milder symptoms. EOPs and LOPs shared some common clinical features and MRI findings, but also had their own characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary Material.

References

  1. Barth PG. Pontocerebellar hypoplasias an overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev. 1993;15(6):411–22.

    Article  CAS  PubMed  Google Scholar 

  2. Barth PG, Aronica E, de Vries L, Nikkels PGJ, Scheper W, Hoozemans JJ, et al. Pontocerebellar hypoplasia type 2: a neuropathological update. Acta Neuropathol. 2007;114(4):373–86.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brun R. Zur Kenntnis der Bildungsfehler des Kleinhirns. Epikritische Bemerkungen zur Entwicklungspathologie, Morphologie und Klinik der Umschriebenen Entwicklungshemmungen des Neozerebellums. Schweiz Arch Neurol Psychiatr.1917;1:48–105.

  4. Appelhof B, Wagner M, Hoefele J, Heinze A, Roser T, Koch-Hogrebe M, et al. Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. Europ J Hum Genet. 2021;29:411–21.

    Article  CAS  PubMed  Google Scholar 

  5. Ucuncu E, Rajamani K, Wilson MSC, Medina-Cano D, Altin N, David P, et al. MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in pontocerebellar hypoplasia. Nature Commun. 2020;11:6087.

    Article  CAS  Google Scholar 

  6. Van Dijk T, Baas F, Barth PG, Poll-The BT. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J Rare Dis. 2018;13(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agamy O, Ben ZB, Lev D, Marcus B, Fine D, Su D, et al. Mutations disrupting Selenocysteine formation cause progressive Cerebello-cerebral atrophy. Am J Hum Genet. 2010;87:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anttonen AK, Hilander T, Linnankivi T, Isohanni P, French RL, Liu Y, et al. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology. 2015;85(4):306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, et al. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain. 2011;134(1):143–56.

    Article  PubMed  Google Scholar 

  10. Pavlidou E, Salpietro V, Phadke R, Hargreaves IP, Batten L, McElreavy K, et al. Pontocerebellar hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency. Eur J Paediatr Neurol. 2016;20(3):483–8.

    Article  PubMed  Google Scholar 

  11. Namavar Y, Barth PG, Poll-The BT, Baas F. Classifification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6:50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Budde BS, Namavar Y, Barth PG, Poll-The BT, Nürnberg G, Becker C, et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet. 2008;40(9):1113–8.

    Article  CAS  PubMed  Google Scholar 

  13. Iwama K, Sasaki M, Hirabayashi S, Ohba C, Iwabuchi E, Miyatake S, et al. Milder progressive cerebellar atrophy caused by biallelic SEPSECS mutations. J Hum Genet. 2016;61(6):527–31.

    Article  CAS  PubMed  Google Scholar 

  14. Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M. The human SepSecStRNASec complex reveals the mechanism of selenocysteine formation. Science. 2009;325:321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan J, Palioura S, Salazar JC, Su D, O’Donoghue P, Hohn MJ, et al. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A. 2006;103(50):18923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wirth EK, Bharathi BS, Hatfifield D, Conrad M, Brielmeier M, Schweizer U. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol Trace Elem Res. 2014;158:203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009;422:11–22.

    Article  CAS  PubMed  Google Scholar 

  18. Puppala AK, French RL, Matthies D, Baxa U, Subramaniam S, Simonović M. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase. Nature. 2016;6:32563.

    CAS  Google Scholar 

  19. Olson HE, Kelly M, LaCoursiere CM, Pinsky R, Tambunan D, Shain C, et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol. 2017;81:419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben-Zeev B, Hoffman C, Lev D, Watemberg N, Malinger G, Brand N, Lerman-Sagie T. Progressive cerebellocerebral atrophy: a new syndrome with microcephaly, mental retardation, and spastic quadriplegia. J Med Genet. 2003;40(8):e96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arrudi-Moreno M, Fernández-Gómez A, Peña-Segura JL. A new mutation in the SEPSECS gene related to pontocerebellar hypoplasia type 2D. Med Clin. 2021;156(2):94–5.

    Article  CAS  Google Scholar 

  22. Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. Am J Med Genet C Semin Med Genet. 2014;166C(2):173–83.

    Article  PubMed  Google Scholar 

  23. Fradejas-Villar N. Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med. 2018;127:206–14.

    Article  CAS  PubMed  Google Scholar 

  24. Schoenmakers E, Chatterjee K. Human Disorders Affecting the Selenocysteine Incorporation Pathway Cause Systemic Selenoprotein Defificiency. Antioxid Redox Signal. 2020;33(7):481–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoenmakers E, Chatterjee K. Human genetic disorders resulting in systemic selenoprotein deficiency. Int J Mol Sci. 2021;22(23):12927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Béna F, et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat. 2014;35(10):1203–10.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu Y-F, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med. 2015;17(10):774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 2015;10(2):148–61.

    Article  CAS  PubMed  Google Scholar 

  29. Van Dijk T, Vermeij JD, van Koningsbruggen S, Lakeman P, Baas F, Poll-The BT. A SEPSECS mutation in a 23-year-old woman with microcephaly and progressive cerebellar ataxia. J Inherit Metab Dis. 2018;41(5):897–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hengel H, Buchert R, Sturm M, Haack TB, Schelling Y, Mahajnah M, et al. First-line exome sequencing in Palestinian and Israeli Arabs with neurological disorders is effificient and facilitates disease gene discovery. Eur J Hum Genet. 2020;28(8):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nejabat M, Inaloo S, Sheshdeh AT, Bahramjahan S, Sarvestani FM, Katibeh P, et al. Genetic testing in various neurodevelopmental disorders which manifest as cerebral palsy: a case study from Iran. Front Pediatr. 2021;9:734946.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ran Zhao analyzed the data and drafted the manuscript. The study concept and design were done by Hong Lu and Limin Zhang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Lu.

Ethics declarations

Ethical Approval

This study was approved by the medical research ethics board of the First Affiliated Hospital of Zhengzhou University. Written informed consent was obtained from our patient and her parents. All methods in the study were performed in accordance with World Medical Association Declaration of Helsinki and its later amendments.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 100 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhang, L. & Lu, H. Analysis of the Clinical Features and Imaging Findings of Pontocerebellar Hypoplasia Type 2D Caused by Mutations in SEPSECS Gene. Cerebellum 22, 938–946 (2023). https://doi.org/10.1007/s12311-022-01470-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01470-9

Keywords

Navigation