Skip to main content

Advertisement

Log in

Early Cerebellar Development in Relation to the Trigeminal System

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Despite the wealth of knowledge of adult cerebellar connectivity, little is known about the developmental mechanisms that underpin its development. Early connectivity is important because it is the foundation of the neural networks crucial for neuronal function and serves as a scaffold on which later tracts form. Conventionally, it is believed that afferents from the vestibular system are the first to invade the cerebellum, at embryonic days (E) 11–E12/13 in mice, where they target the new born Purkinje cells. However, we have demonstrated that pioneer axons that originate from the trigeminal ganglia are already present in the cerebellar primordium by E9, a stage at which afferents from the vestibular ganglia have not yet reached the brainstem, where they target neurons of the cerebellar nuclei. An early-born subset of cerebellar nuclei may be derived from the mesencephalon. These may be the target of the earliest pioneer axons. They form the early connectivity at the rostral end. This is consistent with the notion that the formation of the antero-posterior axis follows a rostro-caudal sequence. The finding that trigeminal ganglion-derived pioneer axons enter the cerebellar primordium before Purkinje cells are born and target the cerebellar nuclei, reveals a novel perspective on the development of early cerebellar connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Voogd J, Ruigrok T. Transverse and longitudinal patterns in the mammalian cerebellum. Prog Brain Res. 1997;114:21–37.

    Article  CAS  PubMed  Google Scholar 

  2. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2(9):307–13.

    Article  CAS  PubMed  Google Scholar 

  3. Witter L, De Zeeuw CI. Regional functionality of the cerebellum. Curr Opin Neurobiol. 2015;33:150–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rahimi-Balaei M, Afsharinezhad P, Bailey K, Buchok M, Yeganeh B, Marzban H. Embryonic stages in cerebellar afferent development. Cerebellum Ataxias. 2015;2(1):1–14.

    Article  Google Scholar 

  5. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron. 2005;45(1):27–40.

    CAS  PubMed  Google Scholar 

  6. Balaei MR, Ashtari N, Bergen H. The embryology and anatomy of the cerebellum. Development of the cerebellum from molecular aspects to diseases: Springer; 2017. p. 33-43

  7. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82.

    Article  CAS  PubMed  Google Scholar 

  8. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91.

    Article  CAS  PubMed  Google Scholar 

  9. Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2014;8:450.

    PubMed  Google Scholar 

  10. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  11. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  12. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26(11):3066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pascual M, Abasolo I, Mingorance-Le Meur A, Martínez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci. 2007;104(12):5193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat. 2012;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5(1):1–13.

    Article  CAS  Google Scholar 

  16. Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by Ptf1a and Atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci. 2014;34(14):4786–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, et al. A single-cell transcriptional atlas of the developing murine cerebellum. Current Biology. 2018;28(18):2910-20. e2.

    Article  CAS  PubMed  Google Scholar 

  18. Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain : A J Neuro. 2009;132(Pt 12):3199–230.

    Article  Google Scholar 

  19. Rahimi-Balaei M, Jiao X, Parkinson FE, Yeganeh B, Marzban H. Early subset of cerebellar nuclei neurons derived from mesencephalon in mice. bioRxiv. 2017:212571.

  20. Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart R-M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122(12):3785–97.

    Article  CAS  PubMed  Google Scholar 

  21. Wizeman JW, Guo Q, Wilion EM, Li JY. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. Elife. 2019;8:e42388.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97(1):901–11.

    Article  CAS  PubMed  Google Scholar 

  23. Pedroarena CM, Kamphausen S. Glycinergic synaptic currents in the deep cerebellar nuclei. Neuropharmacology. 2008;54(5):784–95.

    Article  CAS  PubMed  Google Scholar 

  24. Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, Du Lac S. Glycinergic projection neurons of the cerebellum. J Neurosci. 2009;29(32):10104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41(2):281–94.

    Article  CAS  PubMed  Google Scholar 

  26. Joo W, Yoshioka F, Funaki T, Mizokami K, Rhoton AL Jr. Microsurgical anatomy of the trigeminal nerve. Clin Anat. 2014;27(1):61–88.

    Article  PubMed  Google Scholar 

  27. Marur T, Tuna Y, Demirci S. Facial anatomy. Clin Dermatol. 2014;32(1):14–23.

    Article  PubMed  Google Scholar 

  28. Henssen DJ, Kurt E, Kozicz T, van Dongen R, Bartels RH, van Cappellen van Walsum AM. New insights in trigeminal anatomy: a double orofacial tract for nociceptive input. Front Neuroanat. 2016;10:53

  29. Jerge CR. Organization and function of the trigeminal mensencephalic nucleus. J Neurophysiol. 1963;26(3):379–92.

    Article  CAS  PubMed  Google Scholar 

  30. Hunter E, Begbie J, Mason I, Graham A. Early development of the mesencephalic trigeminal nucleus. Dev Dyn. 2001;222(3):484–93.

    Article  CAS  PubMed  Google Scholar 

  31. Matsushita M, Ikeda M, Okado N. The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience. 1982;7(6):1439–54.

    Article  CAS  PubMed  Google Scholar 

  32. Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front Cell Dev Biol. 2020;8:587699.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, et al. The emergence of mesencephalic trigeminal neurons. Neural Dev. 2017;12(1):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Patrick GW, Haines DE. Cerebellar afferents to paramedian lobule from the trigeminal complex in Tupaia glis: a horseradish peroxidase (HRP) study. J Morphol. 1982;172(2):209–22.

    Article  CAS  PubMed  Google Scholar 

  35. Watson CR, Switzer RC 3rd. Trigeminal projections to cerebellar tactile areas in the rat-origin mainly from n. interpolaris and n. principalis. Neurosci Lett. 1978;10(1–2):77–82.

    Article  CAS  PubMed  Google Scholar 

  36. Steindler DA. Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse. J Comp Neurol. 1985;237(2):155–75.

    Article  CAS  PubMed  Google Scholar 

  37. Falls WM, Rice RE, VanWagner JP. The dorsomedial portion of trigeminal nucleus oralis (Vo) in the rat: cytology and projections to the cerebellum. Somatosens Res. 1985;3(2):89–118.

    Article  CAS  PubMed  Google Scholar 

  38. Billig I, Yatim N, Compoint C, Buisseret-Delmas C, Buisseret P. Cerebellar afferences from the mesencephalic trigeminal nucleus in the rat. NeuroReport. 1995;6(17):2293–6.

    Article  CAS  PubMed  Google Scholar 

  39. Jacquin MF, Semba K, Rhoades RW, Egger MD. Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 1982;246(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  40. Marfurt CF, Rajchert DM. Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol. 1991;303(3):489–511.

    Article  CAS  PubMed  Google Scholar 

  41. Marzban H, Rahimi-Balaei M, Hawkes R. Early trigeminal ganglion afferents enter the cerebellum before the Purkinje cells are born and target the nuclear transitory zone. Brain Struct Funct. 2019;224(7):2421–36.

    Article  CAS  PubMed  Google Scholar 

  42. Streit A. The cranial sensory nervous system: specification of sensory progenitors and placodes. StemBook [Internet]. 2008.

  43. Vogel H, Richter R, Albrecht I, Löwicke G, Klingberg F. Treatment of trigeminal neuralgia with vincristine iontophoresis. A clinical pilot study. Schmerz (Berlin, Germany). 1992;6(2):141–5.

    Article  CAS  Google Scholar 

  44. Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front Cell Dev Biol. 2020;8:1026.

    Article  Google Scholar 

  45. Barlow LA. Cranial nerve development: placodal neurons ride the crest. Curr Biol. 2002;12(5):R171–3.

    Article  CAS  PubMed  Google Scholar 

  46. D’amico-Martel A, Noden DM. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983;166(4):445–68.

    Article  CAS  PubMed  Google Scholar 

  47. Ma Q, Chen Z, del Barco BI, De La Pompa JL, Anderson DJ. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron. 1998;20(3):469–82.

    Article  CAS  PubMed  Google Scholar 

  48. Price S, Daly DT. Neuroanatomy, trigeminal nucleus. StatPearls [Internet]: StatPearls Publishing; 2020.

  49. Bruska M, Woźniak W. The development of the main sensory nucleus of the trigeminal nerve in human embryos. Folia Morphol. 1991;50(3–4):127–38.

    CAS  Google Scholar 

  50. Stainier D, Gilbert W. The monoclonal antibody B30 recognizes a specific neuronal cell surface antigen in the developing mesencephalic trigeminal nucleus of the mouse. J Neurosci. 1989;9(7):2468–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jacobson M. Developmental neurobiology: Springer Science & Business Media; 2013.

  52. Narayanan C, Narayanan Y. Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. 1978.

  53. Hamano S-I, Goto N, Nara T. Development of the human motor trigeminal nucleus. Pediatr Neurosurg. 1988;14(5):230–5.

    Article  CAS  Google Scholar 

  54. Tubbs RS, Rizk E, Shoja M, Loukas M, Barbaro N, Spinner RJ. Nerves and nerve injuries: vol 1: history, embryology, anatomy, imaging, and diagnostics: Academic Press; 2015.

  55. Tello J. Les différenciations neuronales dans l’embryon du poulet pendent les premiers jours de l’incubation. Trav Lab Invest Biol Univ Madrid. 1923;21:1–93.

    Google Scholar 

  56. Windle W, Minear W, Austin M, Orr D. The origin and early development of somatic behavior in the albino rat. Physiol Zool. 1935;8(2):156–85.

    Article  Google Scholar 

  57. Herrick CJ. Development of the cerebrum of Amblystoma during early swimming stages. J Comp Neurol. 1938;68(2):203–41.

    Article  Google Scholar 

  58. Stainier D, Gilbert W. Pioneer neurons in the mouse trigeminal sensory system. Proc Natl Acad Sci. 1990;87(3):923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Easter S, Ross LS, Frankfurter A. Initial tract formation in the mouse brain. J Neurosci. 1993;13(1):285–99.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, et al. The emergence of mesencephalic trigeminal neurons. Neural Dev. 2017;12(1):1–13.

    Article  CAS  Google Scholar 

  61. Muñoz RMV, Santos AC, Graziadio C, Pina-Neto JM. Cerebello-trigeminal-dermal dysplasia (Gómez-López-Hernández syndrome): description of three new cases and review. Am J Med Genet. 1997;72(1):34–9.

    Article  Google Scholar 

  62. Whetsell W, Saigal G, Godinho S. Gomez-Lopez-Hernandez syndrome. Pediatr Radiol. 2006;36(6):552–4.

    Article  PubMed  Google Scholar 

  63. Pascual-Castroviejo I, Ruggieri M. Cerebello-Trigeminal dermal dysplasia (Gomez-Lopez-Hernandez Syndrome). Neurocutaneous disorders phakomatoses and hamartoneoplastic syndromes: Springer; 2008. p. 935-40.

  64. Lindsay F, Anderson I, Wentzensen IM, Suhrbier D, Stevens CA. Genetic evaluation including exome sequencing of two patients with Gomez-Lopez-Hernandez syndrome: case reports and review of the literature. Am J Med Genet A. 2020;182(4):623–7.

    Article  PubMed  Google Scholar 

  65. Easter S, Taylor J. The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract. Development. 1989;107(3):553–73.

    Article  PubMed  Google Scholar 

  66. Wilson SW, Ross LS, Parrett T, Easter S. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development. 1990;108(1):121–45.

    Article  CAS  PubMed  Google Scholar 

  67. Chédotal A, Pourquié O, Sotelo C. Initial tract formation in the brain of the chick embryo: selective expression of the BEN/SC1/DM-GRASP cell adhesion molecule. Eur J Neurosci. 1995;7(2):198–212.

    Article  PubMed  Google Scholar 

  68. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–48.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Comer JD, Alvarez S, Butler SJ, Kaltschmidt JA. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev. 2019;14(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morris R, Beech J, Heizmann C. Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry. Neuroscience. 1988;27(2):571–96.

    Article  CAS  PubMed  Google Scholar 

  71. Ashwell K, Zhang L-L. Ontogeny of afferents to the fetal rat cerebellum. Cells Tissues Organs. 1992;145(1):17–23.

    Article  CAS  Google Scholar 

  72. Ashwell K, Zhang L-I. Prenatal development of the vestibular ganglion and vestibulocerebellar fibres in the rat. Anat Embryol. 1998;198(2):149–61.

    Article  CAS  Google Scholar 

  73. Kimelman D, Martin BL. Anterior-posterior patterning in early development: three strategies. Wiley Interdiscip Rev Dev Biol. 2012;1(2):253–66.

    Article  CAS  PubMed  Google Scholar 

  74. Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961;4:277–96.

    Article  CAS  PubMed  Google Scholar 

  75. Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol. 1987;257(4):529–52.

    Article  CAS  PubMed  Google Scholar 

  76. Simeone A, Puelles E, Acampora D. The Otx family. Curr Opin Genet Dev. 2002;12(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  77. Simeone A, Di Salvio M, Di Giovannantonio LG, Acampora D, Omodei D, Tomasetti C. The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol. 2011;43(2):107–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Natural Sciences and Engineering Research Council (HM: NSERC Discovery Grant # RGPIN-2018–06040), The Children’s Hospital Research Institute of Manitoba (HM: CHRIM Grant # 320035), and Research Manitoba Tri-Council Bridge Funding Program (HM: Grant # 47955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Marzban.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Balaei, M., Marzban, H. & Hawkes, R. Early Cerebellar Development in Relation to the Trigeminal System. Cerebellum 21, 784–790 (2022). https://doi.org/10.1007/s12311-022-01388-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01388-2

Keywords

Navigation