Skip to main content

Advertisement

Log in

Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4–12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome–related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amemiya S, Redish AD. Hippocampal theta-gamma coupling reflects state-dependent information processing in decision making. Cell Rep. 2018;22:3328–38. https://doi.org/10.1016/j.celrep.2018.02.091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eichenbaum H. The role of the hippocampus in navigation is memory. J Neurophysiol. 2017;117:1785–96. https://doi.org/10.1152/jn.00005.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Churchwell JC, Kesner RP. Hippocampal-prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behav Brain Res. 2011;225:389–95. https://doi.org/10.1016/j.bbr.2011.07.045.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gordon JA. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol. 2011;21:486–91. https://doi.org/10.1016/j.conb.2011.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol. 2011;21:475–85. https://doi.org/10.1016/j.conb.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  6. Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3: e402. https://doi.org/10.1371/journal.pbio.0030402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front Integr Neurosci. 2010;4:2. https://doi.org/10.3389/neuro.07.002.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9:474–80.

    Article  Google Scholar 

  9. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316:1609–12. https://doi.org/10.1126/science.1139597.

    Article  CAS  PubMed  Google Scholar 

  10. Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron. 2012;75:875–88. https://doi.org/10.1016/j.neuron.2012.06.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brunet NM, Bosman CA, Vinck M, Roberts M, Oostenveld R, Desimone R, De Weerd P, Fries P. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci U S A. 2014. https://doi.org/10.1073/pnas.1309714111.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McAfee SS, Liu Y, Dhamala M and Heck DH. Thalamocortical transmission of visual information in mice involves synchronized spiking aligned with high gamma oscillations. Front Neurosci 2018: 12. doi https://doi.org/10.3389/fnins.2018.00837

  13. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron. 2008;60:709–19. https://doi.org/10.1016/j.neuron.2008.09.010.

    Article  CAS  PubMed  Google Scholar 

  14. Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.

    Article  CAS  Google Scholar 

  15. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22:1371–8. https://doi.org/10.1038/s41593-019-0436-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, Bakshinskaya DE and Wang SS. Normal cognitive and social development require posterior cerebellar activity. eLife 2018: 7. doi https://doi.org/10.7554/eLife.36401

  17. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  Google Scholar 

  18. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    Article  CAS  Google Scholar 

  19. Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C and Rondi-Reig L. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 2019: 8. doi https://doi.org/10.7554/eLife.41896

  20. McAfee S, Liu Y, Sillitoe RV, Heck DH. Cerebellar lobulus simplex and Crus I differentially represent phase and phase difference of prefrontal cortical and hippocampal oscillations. Cell Rep. 2019;27:2328–34. https://doi.org/10.1016/j.celrep.2019.04.085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58:553–60. https://doi.org/10.1002/ana.20604.

    Article  PubMed  Google Scholar 

  22. Buzsaki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25:1073–188. https://doi.org/10.1002/hipo.22488.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richman CL, Dember WN, Kim P. Spontaneous alternation behavior in animals: a review. Current Psychological Research & Reviews. 1987;5:358–91.

    Article  Google Scholar 

  24. Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002;26:91–104.

    Article  CAS  Google Scholar 

  25. Leske S, Dalal SS. Reducing power line noise in EEG and MEG data via spectrum interpolation. Neuroimage. 2019;189:763–76. https://doi.org/10.1016/j.neuroimage.2019.01.026.

    Article  PubMed  Google Scholar 

  26. Mewett DT, Reynolds KJ, Nazeran H. Reducing power line interference in digitised electromyogram recordings by spectrum interpolation. Med Biol Eng Compu. 2004;42:524–31. https://doi.org/10.1007/bf02350994.

    Article  CAS  Google Scholar 

  27. Mitra PP, Pesaran B. Analysis of dynamic brain imaging data. Biophys J. 1999;76:691–708. https://doi.org/10.1016/S0006-3495(99)77236-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron. 2010;66:921–36. https://doi.org/10.1016/j.neuron.2010.05.013.

    Article  CAS  PubMed  Google Scholar 

  29. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature. 2010;464:763–7. https://doi.org/10.1038/nature08855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88:220–135.

    Article  CAS  Google Scholar 

  31. Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 2016;352:812–6. https://doi.org/10.1126/science.aad5252.

    Article  CAS  PubMed  Google Scholar 

  32. Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010;107:6516–9. https://doi.org/10.1073/pnas.0913016107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lindeman S, Kros L, Hong S, Mejias JF, Romano V, Negrello M, Bosman LWJ and De Zeeuw CI. Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior. PNAS 2021: 118. doi https://doi.org/10.1073/pnas.2015292118

  34. Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6. https://doi.org/10.1523/JNEUROSCI.5521-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frick KM, Burlingame LA, Arters JA, Berger-Sweeney J. Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex. Neuroscience. 2000;95:293–307. https://doi.org/10.1016/s0306-4522(99)00418-2.

    Article  CAS  PubMed  Google Scholar 

  36. Braitenberg V, Heck DH, Sultan F. The detection and generation of sequences as a key to cerebellar function. Experiments and theory BehavBrain Sci. 1997;20:229–45.

    CAS  Google Scholar 

  37. Diener HC, Dichgans J, Guschlbauer B, Bacher M, Rapp H, Klockgether T. The coordination of posture and voluntary movement in patients with cerebellar dysfunction. Mov Disord. 1992;7:14–22.

    Article  CAS  Google Scholar 

  38. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  CAS  Google Scholar 

  39. Raghavan RT, Prevosto V, Sommer MA. Contribution of cerebellar loops to action timing. Curr Opin Behav Sci. 2016;8:28–34. https://doi.org/10.1016/j.cobeha.2016.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zacharia TT, Eslinger PJ. Functional MRI activation patterns of cerebellum in patients with epilepsy and brain tumors. Clin Anat. 2019;32:1053–60. https://doi.org/10.1002/ca.23439.

    Article  PubMed  Google Scholar 

  41. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66. https://doi.org/10.3389/fpubh.2015.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807. https://doi.org/10.1007/s12311-012-0355-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McAfee SS, Liu Y, Sillitoe RV and Heck DH. Cerebellar coordination of neuronal communication in cerebral cortex. Frontiers in Systems Neuroscience 2022: 15. doi https://doi.org/10.3389/fnsys.2021.781527

Download references

Acknowledgements

We would like to thank the Neuroscience Institute of the University of Tennessee Health Science Center (UTHSC) for the financial support, Micheal Nguyen from the UTHSC Bio-Medical Services and Shuhua Qi for technical support. We would also like to thank Amanda Brown and Trace Stay (Baylor College of Medicine) for the support with some of the breeding and also for genotyping. DHH and YL are supported by R01MH112143, R01MH112143-02S1, and R37MH085726. RVS is supported by R01NS100874, R01NS119301, R01MH112143, and U54HD083092.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DHH, SSM, RVS, YL. Formal analysis: YL, SSM, and MD. Funding acquisition: DHH and RVS. Methodology: YL. Supervision: DHH. Writing – original draft: YL and DHH. Writing – review and editing: DHH, YL, SSM, MEvdH, MD, RVS.

Corresponding author

Correspondence to Detlef H. Heck.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 498 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., McAfee, S.S., Van Der Heijden, M.E. et al. Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making. Cerebellum 21, 762–775 (2022). https://doi.org/10.1007/s12311-022-01383-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01383-7

Keywords

Navigation