Skip to main content
Log in

The Cerebellum and Implicit Sequencing: Evidence from Cerebellar Ataxia

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum recognizes sequences from prior experiences and uses this information to generate internal models that predict future outcomes in a feedforward manner [Front Hum Neurosci 8: 475, 2014; Cortex 47: 137–44, 2011; Cerebellum 7: 611–5, 2008; J Neurosci 26: 9107–16, 2006]. This process has been well documented in the motor domain, but the cerebellum’s role in cognitive sequencing, within the context of implicit versus explicit processes, is not well characterized. In this study, we tested individuals with cerebellar ataxia and healthy controls to clarify the role of the cerebellum sequencing using variations on implicit versus explicit and motor versus cognitive demands across five experiments. Converging results across these studies suggest that cerebellar feedforward mechanisms may be necessary for sequencing in the implicit domain only. In the ataxia group, rhythmic tapping, rate of motor learning, and implicit sequence learning were impaired. However, for cognitive sequencing that could be accomplished using explicit strategies, the cerebellar group performed normally, as though they shifted to extra-cerebellar mechanisms to compensate. For example, when cognitive and motor functions relied on cerebellar function simultaneously, the ataxia group’s motor function was unaffected, in contrast to that of controls whose motor performance declined as a function of cognitive load. These findings indicated that the cerebellum is not critical for all forms of sequencing per se. Instead, it plays a fundamental role for sequencing within the implicit domain, whether functions are motor or cognitive. Moreover, individuals with cerebellar ataxia are generally able to compensate for cognitive sequencing when explicit strategies are available in order to preserve resources for motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holmes G. The cerebellum of man. Brain. 1939;62:30.

    Article  Google Scholar 

  2. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28. https://doi.org/10.1016/s0166-4328(05)80016-6.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  Google Scholar 

  4. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  5. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64. https://doi.org/10.1146/annurev-neuro-070918-050258.

    Article  CAS  PubMed  Google Scholar 

  6. Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci. 2014;8:475. https://doi.org/10.3389/fnhum.2014.00475.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44. https://doi.org/10.1016/j.cortex.2009.08.011.

    Article  PubMed  Google Scholar 

  8. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5. https://doi.org/10.1007/s12311-008-0060-x.

    Article  PubMed  Google Scholar 

  9. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–16. https://doi.org/10.1523/JNEUROSCI.2622-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13. https://doi.org/10.1038/nrn2332.

    Article  CAS  PubMed  Google Scholar 

  11. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59. https://doi.org/10.1177/1073858404263517.

    Article  PubMed  Google Scholar 

  12. Spencer RMC, Ivry RB. Cerebellum and timing. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the Cerebellum and Cerebellar Disorders: Springer Netherlands; 2013. p. 1201–19.

  13. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52. https://doi.org/10.1162/jocn.1989.1.2.136.

    Article  CAS  PubMed  Google Scholar 

  14. Schlerf JE, Spencer RMC, Zelaznik HN, Ivry RB. Timing of rhythmic movements in patients with cerebellar degeneration. Cerebellum. 2007;6:221–31. https://doi.org/10.1080/14734220701370643.

    Article  CAS  PubMed  Google Scholar 

  15. Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58. https://doi.org/10.1016/j.brainresbull.2005.07.014.

    Article  PubMed  Google Scholar 

  16. Slapik M, Kronemer SI, Morgan O, Bloes R, Lieberman S, Mandel J, et al. Visuospatial organization and recall in cerebellar ataxia. Cerebellum. 2018;18:33–46. https://doi.org/10.1007/s12311-018-0948-z.

    Article  Google Scholar 

  17. Pascual-Leone A, Grafman J, Clark K, Stewart M, Massaquoi S, Lou JS, et al. Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann Neurol. 1993;34:594–602.

    Article  CAS  Google Scholar 

  18. Fiez JA, Petersen SE, Cheney MK and Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 1992: 115 Pt 1:155–178.

  19. Marien P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13:386–410. https://doi.org/10.1007/s12311-013-0540-5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53. https://doi.org/10.1016/j.bandl.2009.07.006.

    Article  PubMed  Google Scholar 

  21. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  CAS  Google Scholar 

  22. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14:50–8. https://doi.org/10.1007/s12311-014-0630-z.

    Article  PubMed  Google Scholar 

  23. Marvel CL, Morgan OP, Kronemer SI. How the motor system integrates with working memory. Neurosci Biobehav Rev. 2019;102:184–94. https://doi.org/10.1016/j.neubiorev.2019.04.017.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Destrebecqz A, Peigneux P, Laureys S, Degueldre C, Del Fiore G, Aerts J, et al. The neural correlates of implicit and explicit sequence learning: interacting networks revealed by the process dissociation procedure. Learn Mem. 2005;12:480–90. https://doi.org/10.1101/lm.95605.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fletcher PC, Zafiris O, Frith CD, Honey RA, Corlett PR, Zilles K, et al. On the benefits of not trying: brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cereb Cortex. 2005;15:1002–15. https://doi.org/10.1093/cercor/bhh201.

    Article  CAS  PubMed  Google Scholar 

  26. Honda M, Deiber MP, Ibanez V, Pascual-Leone A, Zhuang P, Hallett M. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study Brain. 1998;121(Pt 11):2159–73. https://doi.org/10.1093/brain/121.11.2159.

    Article  PubMed  Google Scholar 

  27. Willingham DB, Salidis J, Gabrieli JD. Direct comparison of neural systems mediating conscious and unconscious skill learning. J Neurophysiol. 2002;88:1451–60. https://doi.org/10.1152/jn.2002.88.3.1451.

    Article  PubMed  Google Scholar 

  28. Reber AS. Implicit learning and tacit knowledge. J Exp Psychol Gen. 1989;118:219–35.

    Article  Google Scholar 

  29. Seger CA. Implicit learning. Psychol Bull. 1994;115:163–96.

    Article  CAS  Google Scholar 

  30. Janacsek K, Shattuck KF, Tagarelli KM, Lum JAG, Turkeltaub PE, Ullman MT. Sequence learning in the human brain: a functional neuroanatomical meta-analysis of serial reaction time studies. Neuroimage. 2020;207:116387. https://doi.org/10.1016/j.neuroimage.2019.116387.

    Article  PubMed  Google Scholar 

  31. Kumari V, Gray JA, Honey GD, Soni W, Bullmore ET, Williams SC, et al. Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophr Res. 2002;57:97–107. https://doi.org/10.1016/s0920-9964(01)00270-5.

    Article  PubMed  Google Scholar 

  32. Marvel CL, Turner BM, O'Leary DS, Johnson HJ, Pierson RK, Ponto LL, et al. The neural correlates of implicit sequence learning in schizophrenia. Neuropsychology. 2007;21:761–77. https://doi.org/10.1037/0894-4105.21.6.761.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21. https://doi.org/10.1007/s00401-012-1000-x.

    Article  CAS  PubMed  Google Scholar 

  34. Radloff LS. The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.

    Article  Google Scholar 

  35. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11. https://doi.org/10.1016/S0022-510X(96)00231-6.

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20. https://doi.org/10.1212/01.wnl.0000219042.60538.92.

    Article  CAS  PubMed  Google Scholar 

  37. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.

    Google Scholar 

  38. Molinari M, Leggio MG, De Martin M, Cerasa A, Thaut M. Neurobiology of rhythmic motor entrainment. Ann N Y Acad Sci. 2003;999:313–21. https://doi.org/10.1196/annals.1284.042.

    Article  PubMed  Google Scholar 

  39. Nichelli P, Alway D, Grafman J. Perceptual timing in cerebellar degeneration. Neuropsychologia. 1996;34:863–71. https://doi.org/10.1016/0028-3932(96)00001-2.

    Article  CAS  PubMed  Google Scholar 

  40. Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10:752–65. https://doi.org/10.1162/089892998563149.

    Article  CAS  PubMed  Google Scholar 

  41. Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, et al. Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res. 2004;21:193–205. https://doi.org/10.1016/j.cogbrainres.2004.01.010.

    Article  PubMed  Google Scholar 

  42. Shimamura AP, Janowsky JS, Squire LR. Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia. 1990;28:803–13. https://doi.org/10.1016/0028-3932(90)90004-8.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105:8108–13. https://doi.org/10.1073/pnas.0800374105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tecchio F, Salustri C, Thaut MH, Pasqualetti P, Rossini PM. Conscious and preconscious adaptation to rhythmic auditory stimuli: a magnetoencephalographic study of human brain responses. Exp Brain Res. 2000;135:222–30. https://doi.org/10.1007/s002210000507.

    Article  CAS  PubMed  Google Scholar 

  45. Eierud C. Developing neuroimaging methods to disentangle mild traumatic brain injury. Baylor College of Medicine: Houston; 2014.

    Google Scholar 

  46. Straw AD. Vision egg: an open-source library for realtime visual stimulus generation. Front Neuroinform. 2008;2:4. https://doi.org/10.3389/neuro.11.004.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rubchinsky L. Tremor. Brain Corporation. 28 October 2013. http://www.scholarpedia.org/article/Tremor. .

  48. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.

    Article  CAS  Google Scholar 

  49. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46:880–95. https://doi.org/10.1016/j.cortex.2009.08.017.

    Article  PubMed  Google Scholar 

  50. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20:271–9. https://doi.org/10.1007/s11065-010-9137-7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120:42–51. https://doi.org/10.1016/j.bandl.2011.08.005.

    Article  PubMed  Google Scholar 

  52. Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37. https://doi.org/10.1016/j.neuropsychologia.2004.12.015.

    Article  PubMed  Google Scholar 

  53. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24:332–8. https://doi.org/10.1016/j.neuroimage.2004.08.032.

    Article  PubMed  Google Scholar 

  54. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13. https://doi.org/10.1080/14734220701266742.

    Article  PubMed  Google Scholar 

  55. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol. 2002;87:1336–47. https://doi.org/10.1152/jn.00368.2001.

    Article  PubMed  Google Scholar 

  56. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013;110:2337–49. https://doi.org/10.1152/jn.00062.2013.

    Article  PubMed  Google Scholar 

  57. Kronemer SI, Mandel JA, Sacktor NC, Marvel CL. Impairments of motor function while multitasking in HIV. Front Hum Neurosci. 2017;11:212. https://doi.org/10.3389/fnhum.2017.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tzvi E, Zimmermann C, Bey R, Munte TF, Nitschke M, Kramer UM. Cerebellar degeneration affects cortico-cortical connectivity in motor learning networks. Neuroimage-Clinical. 2017;16:66–78. https://doi.org/10.1016/j.nicl.2017.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Doyon J, Gaudreau D, Laforce R Jr, Castonguay M, Bedard PJ, Bedard F, et al. Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn. 1997;34:218–45.

    Article  CAS  Google Scholar 

  60. Dirnberger G, Novak J, Nasel C. Perceptual sequence learning is more severely impaired than motor sequence learning in patients with chronic cerebellar stroke. J Cogn Neurosci. 2013;25:2207–15. https://doi.org/10.1162/jocn_a_00444.

    Article  PubMed  Google Scholar 

  61. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120(Pt 10):1753–62. https://doi.org/10.1093/brain/120.10.1753.

    Article  PubMed  Google Scholar 

  62. Nissen MJ, Bullemer P. Attentional requirements of learning: evidence from performance measures. Cogn Psychol. 1987;19:1–32.

    Article  Google Scholar 

  63. Shin JC, Ivry RB. Spatial and temporal sequence learning in patients with Parkinson's disease or cerebellar lesions. J Cogn Neurosci. 2003;15:1232–43. https://doi.org/10.1162/089892903322598175.

    Article  PubMed  Google Scholar 

  64. Howard JH Jr, Howard DV. Age differences in implicit learning of higher order dependencies in serial patterns. Psychol Aging. 1997;12:634–56.

    Article  Google Scholar 

  65. Marvel CL, Schwartz BL, Howard DV, Howard JH Jr. Implicit learning of non-spatial sequences in schizophrenia. J Int Neuropsychol Soc. 2005;11:659–67. https://doi.org/10.1017/S1355617705050861.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Feeney JJ, Howard JH Jr, Howard DV. Implicit learning of higher order sequences in middle age. Psychol Aging. 2002;17:351–5.

    Article  Google Scholar 

  67. Schwartz BL, Howard DV, Howard JH Jr, Hovaguimian A, Deutsch SI. Implicit learning of visuospatial sequences in schizophrenia. Neuropsychology. 2003;17:517–33.

    Article  Google Scholar 

  68. Psychology Software Tools I. E-Prime v 2.0. Pittsburgh; 2007.

  69. Molinari M, Masciullo M. The implementation of predictions during sequencing. Front Cell Neurosci. 2019;13. https://doi.org/10.3389/fncel.2019.00439.

  70. Elyoseph Z, Mintz M, Vakil E, Zaltzman R, Gordon CR. Selective procedural memory impairment but preserved declarative memory in spinocerebellar ataxia type 3. Cerebellum. 2020;19:226–34. https://doi.org/10.1007/s12311-019-01101-w.

    Article  PubMed  Google Scholar 

  71. Wong AL, Marvel CL, Taylor JA, Krakauer JW. Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? Brain. 2019;142:662–73. https://doi.org/10.1093/brain/awy334.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cofer CN, Bruce DR, Reicher GM. Clustering in free recall as a function of certain methodological variations. J Exp Psychol. 1966;71:858–66. https://doi.org/10.1037/h0023217.

    Article  CAS  PubMed  Google Scholar 

  73. Schmahmann J. The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. International Review of Psychiatry. 2001;13:313–22.

    Article  Google Scholar 

  74. Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. Neuroimage Clin. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70. https://doi.org/10.1093/brain/awx317.

    Article  PubMed  Google Scholar 

  76. Kay S, Opler L, Fiszbein A. Positive and negative syndrome scale. Multi-Health Systems: North Tonawanda; 1986.

    Google Scholar 

  77. Barth A, Kufferle B. Development of a proverb test for assessment of concrete thinking problems in schizophrenic patients. Nervenarzt. 2001;72:853–8.

    Article  CAS  Google Scholar 

  78. Thoma P, Hennecke M, Mandok T, Wahner A, Brune M, Juckel G, et al. Proverb comprehension impairments in schizophrenia are related to executive dysfunction. Psychiatry Res. 2009;170:132–9. https://doi.org/10.1016/j.psychres.2009.01.026.

    Article  PubMed  Google Scholar 

  79. Andreasen NC, Paradiso S, O'Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18. https://doi.org/10.1093/oxfordjournals.schbul.a033321.

    Article  CAS  PubMed  Google Scholar 

  80. Sandyk R, Kay SR, Merriam AE. Atrophy of the cerebellar vermis: relevance to the symptoms of schizophrenia. Int J Neurosci. 1991;57:205–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cyrus Eierud for an initial version of the task that was adapted here for Experiment 1, Leah Rubin for her statistical support of Experiment 2, Erin Hill for her assistance with Experiment 5, and Jason Creighton for his assistance with data collection in all experiments. We are extremely grateful to the National Ataxia Foundation for providing resources for testing at their 2018 and 2019 Annual Ataxia Conferences. Finally, we thank the volunteers, with and without ataxia, who contributed their valuable time and effort to this research.

Funding

Funding for this study was provided by the Gordon and Marilyn Macklin Foundation and the Margaret Q. Landenberger Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization and design. Material preparation, data collection, and analyses were performed by Owen Morgan, Mitchell Slapik, Katherine Iannuzzelli, Ashley Cochran, Sharif Kronemer, and Cherie Marvel. The first draft of the manuscript was written by Owen Morgan, Mitchell Slapik, Katherine Iannuzzelli, and Cherie Marvel, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Funding acquisition and resources were provided by Peg Nopoulos, Liana Rosenthal, and Cherie Marvel.

Corresponding author

Correspondence to Cherie L. Marvel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 30 kb)

ESM 2

(DOCX 28 kb)

ESM 3

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, O.P., Slapik, M.B., Iannuzzelli, K.G. et al. The Cerebellum and Implicit Sequencing: Evidence from Cerebellar Ataxia. Cerebellum 20, 222–245 (2021). https://doi.org/10.1007/s12311-020-01206-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01206-7

Keywords

Navigation