Skip to main content
Log in

The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The functional domain of the cerebellum extends beyond its traditional role in motor control. In recent years, this structure has increasingly been considered to play a crucial role even in cognitive performance and attentional processes. Attention is defined as the ability to appropriately allocate processing resources to relevant stimuli. According to the Posnerian model, three interacting networks modulate attentive processes: the alerting, orienting, and executive networks. The aim of this study was to investigate the role played by the cerebellum in the functioning of the attentive networks using the Attention Network Test (ANT). We studied the effects of transcranial direct current stimulation (tDCS), delivered over the cerebellum in cathodal, anodal, and sham sessions, on ANT parameters in healthy subjects. After anodal and sham tDCS, the efficiency of the three attention networks remained stable, and a significant reduction in reaction time (RT) following the task repetition was observed for both congruent and incongruent targets, indicating a learning effect. After cathodal stimulation, instead, while the efficiency of the alerting and orienting networks remained stable, the efficiency of the executive network was significantly reduced. Moreover, a significant reduction in RT was observed for the congruent target alone, with no difference being detected for the incongruent target, indicating that cerebellar inhibition caused an attentive executive dysfunction specifically related to the ability to process complex stimuli in which conflict signals or errors are present. These results point to a role of the cerebellum, a subcortical structure that is thought to affect error processing both directly, by making predictions of errors or behaviors related to errors, and indirectly, by managing the functioning of brain cortical areas involved in the perception of conflicting signals, in the functioning of the attentional networks, particularly the executive network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lancet. 1922;2:59–65.

    Google Scholar 

  2. Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga M, editor. The cognitive neurosciences (2nd edn): MIT Press; 2000. p. 999–1011.

  3. Baillieux H, DeSmet HJ, Paquier PF, DeDeyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Article  PubMed  Google Scholar 

  4. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21:313–32.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sasaki K. Cerebello-cerebral interactions in cats and monkeys. In: Massion J, Sasaki K, editors. Cerebro-cerebellar interactions. Amsterdam: Elsevier; 1979. p. 105–24.

    Google Scholar 

  6. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    Article  CAS  PubMed  Google Scholar 

  7. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of an on human primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  PubMed  Google Scholar 

  8. Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.

    Google Scholar 

  9. Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol. 2004;115:271–89.

    Article  Google Scholar 

  10. Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci. 1991;3(4):355–66.

    Article  CAS  PubMed  Google Scholar 

  11. Cabeza R, Nyberg L. Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol. 2000;13(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  12. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    Article  CAS  PubMed  Google Scholar 

  13. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–52.

    Article  CAS  PubMed  Google Scholar 

  14. Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  15. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  16. Botez-Marquard T, Bard C, Léveillé J, Botez MI. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol. 2001;8(4):347–53.

    Article  CAS  PubMed  Google Scholar 

  17. Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol. 2005;35:773–9.

    Article  CAS  Google Scholar 

  18. Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, et al. Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1407–14.

    CAS  PubMed  Google Scholar 

  19. Ravnkilde B, Videbech P, Rosenberg R, Gjedde A, Gade A. Putative tests of frontal lobe function: a PET-study of brain activation during Stroop’s test and verbal fluency. J Clin Exp Neuropsychol. 2002;24:534–47.

    Article  PubMed  Google Scholar 

  20. Lie CH, Specht K, Marshall JC. Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage. 2006;30:1038–49.

    Article  PubMed  Google Scholar 

  21. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.

    Article  CAS  PubMed  Google Scholar 

  22. Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018;108:35–49.

    Article  PubMed  Google Scholar 

  23. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  24. Ciesilski KT, Courchesne E, Elmasian R. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol. 1990;75:207–20.

    Article  Google Scholar 

  25. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain BA, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.

    Article  CAS  PubMed  Google Scholar 

  26. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.

    Article  PubMed  Google Scholar 

  27. Le TH, Pardo JV, Hu X. 4T-fMRI study of non spatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol. 1998;79:1535–48.

    Article  CAS  PubMed  Google Scholar 

  28. Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45(13):3068–74.

    Article  PubMed  Google Scholar 

  29. Striemer CL, Cantelmi D, Cusimano MD, Danckert JA, Schweizer TA. Deficits in reflexive covert attention following cerebellar injury. Front Hum Neurosci. 2015;9:428.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–60.

    Article  Google Scholar 

  31. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.

    Article  PubMed  Google Scholar 

  32. Arasanz CP, Staines WR, Schweizer TA. Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Front Behav Neurosci. 2012;6:55.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci. 2015;9:158.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, et al. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage. 2017;156:190–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25(4):220–4.

    Article  CAS  PubMed  Google Scholar 

  37. Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Willert C, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke—a case study. Neurosci Lett. 2013;548:206–11.

    Article  CAS  PubMed  Google Scholar 

  38. Mannarelli D, Pauletti C, DeLucia MC, Currà A, Fattapposta F. Insights from ERPs into attention during recovery after cerebellar stroke: a case report. Neurocase. 2015;21(6):721–6.

    Article  PubMed  Google Scholar 

  39. Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.

    Article  PubMed  Google Scholar 

  40. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.

    Article  PubMed  Google Scholar 

  41. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216:1–10.

    Article  PubMed  Google Scholar 

  43. Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;3:468–75.

    Article  Google Scholar 

  44. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  45. Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage. 2013;83:569–80.

    Article  PubMed  Google Scholar 

  46. Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, et al. Localizing the effects of anodal tDCS at the level of cortical sources: a reply to bailey et al., 2015. Cortex. 2016;74:323–8.

    Article  PubMed  Google Scholar 

  47. Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex. 2017:1–9.

  48. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/ transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008;1:326–36.

    Article  PubMed  Google Scholar 

  49. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.

    Article  CAS  PubMed  Google Scholar 

  50. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.

    Article  PubMed  Google Scholar 

  51. Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  52. Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9.

    Article  Google Scholar 

  53. Howes D, Boller F. Simple reaction time: evidence for focal impairments from lesions of the right hemisphere. Brain. 1975;98:317–32.

    Article  CAS  PubMed  Google Scholar 

  54. Ladavas E. Is hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? Brain. 1987;110:167–80.

    Article  PubMed  Google Scholar 

  55. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, et al. Formation of a motor memory by action observation. J Neurosci. 2005;25:9339–46.

    Article  CAS  PubMed  Google Scholar 

  57. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97.

    Article  CAS  PubMed  Google Scholar 

  58. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003;114(11):2220–2, 2222.

  59. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

    Article  PubMed  Google Scholar 

  60. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.

    Article  PubMed  Google Scholar 

  61. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review. 2011;6:135–47.

    Article  Google Scholar 

  63. Colebatch JG. Bereitschafts potential and movement-related potentials: origin, significance, and application in disorders of human movement. Mov Disord. 2007;22:601–10.

    Article  PubMed  Google Scholar 

  64. Horner AJ, Henson RN. Priming, response learning and repetition suppression. Neuropsychologia. 2008;46:1979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T. Post-error slowing: an orienting account. Cognition. 2009;111:275–9.

    Article  PubMed  Google Scholar 

  66. Wessel JR, Danielmeier C, Morton JB, Ullsperger M. Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci. 2012;32(22):7528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78:447–55.

    Article  CAS  PubMed  Google Scholar 

  68. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error-detection and compensation. Psychol Sci. 1993;4:385–90.

    Article  Google Scholar 

  69. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25:11730–7.

    Article  CAS  PubMed  Google Scholar 

  70. Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–43.

    Article  CAS  PubMed  Google Scholar 

  71. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306:443–7.

    Article  CAS  Google Scholar 

  72. Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry. 2007;61(10):1171–8.

    Article  PubMed  Google Scholar 

  73. Posner MI, Inhoff A, Friedrich F. Isolating attentional systems: a cognitive anatomical analysis. Psychobiology. 1987;15:107–21.

    Google Scholar 

  74. Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354:1325–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  CAS  PubMed  Google Scholar 

  76. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.

    Article  PubMed  Google Scholar 

  77. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.

    Article  PubMed  Google Scholar 

  78. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  79. Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 2003;89:1223–37.

    Article  PubMed  Google Scholar 

  80. Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10:683–93.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010a;1349:76–89.

    Article  CAS  PubMed  Google Scholar 

  83. Bolognini N, Olgiati E, Rossetti A, Maravita A. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci. 2010b;31(10):1800–6.

    Article  PubMed  Google Scholar 

  84. Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Roy LB, Sparing R, Fink GR, Hesse MD. Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia. 2015;74:96–107.

    Article  PubMed  Google Scholar 

  86. Moos K, Vossel S, Weidner R, Sparing R, Fink GR. Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci. 2012;32(46):16360–8.

    Article  CAS  PubMed  Google Scholar 

  87. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.

    Article  PubMed  Google Scholar 

  88. Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36.

    Article  PubMed  Google Scholar 

  89. Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ball K, Lane AR, Smith DT, Ellison A. Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search. Brain Stimul. 2013;6(6):959–65.

    Article  PubMed  Google Scholar 

  91. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 2013;6(4):683–9.

    Article  PubMed  Google Scholar 

  93. Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Mannarelli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannarelli, D., Pauletti, C., Currà, A. et al. The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study. Cerebellum 18, 457–468 (2019). https://doi.org/10.1007/s12311-019-01014-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01014-8

Keywords

Navigation