Skip to main content

Advertisement

Log in

Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The vestibulo-ocular reflex (VOR) can be viewed as an adaptive control system that maintains compensatory eye movements during head motion. As the cerebellar flocculus is intimately involved in this adaptive motor control of the VOR, the VOR has been a popular model system for investigating cerebellar motor learning. Long-term depression (LTD) and long-term potentiation (LTP) at the parallel fiber–Purkinje cell synapses are considered to play major roles in cerebellar motor learning. A recent study using mutant mice demonstrated cerebellar motor learning with hampered LTD; the study concluded that the parallel fiber–Purkinje cell LTD is not essential. More recently, multiple forms of plasticity have been found in the cerebellum, and they are believed to contribute to cerebellar motor learning. However, it is still unclear how synaptic plasticity modifies the signal processing that underlies motor learning in the flocculus. A computational simulation suggested that the plasticity present in mossy fiber–granule cell synapses improves VOR-related sensory-motor information transferred into granule cells, whereas the plasticity in the molecular layer stores this information as a memory under guidance from climbing fiber teaching signals. Thus, motor learning and memory are thought to be induced mainly by LTD and LTP at parallel fiber–Purkinje cell synapses and by rebound potentiation at molecular interneuron–Purkinje cell synapses among the multiple forms of plasticity in the cerebellum. In this study, we focused on the LTD and LTP at parallel fiber–Purkinje cell synapses. Based on our simulation, we propose that acute VOR motor learning accomplishes by simultaneous enhancement of eye movement signals via LTP and suppression of vestibular signals via LTD to increase VOR gain (gain-up learning). To decrease VOR gain (gain-down learning), these two signals are modified in the opposite directions; namely, LTD suppresses eye movement signals, whereas LTP enhances vestibular signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ito M, Jastreboff PJ, Miyashita Y. Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp Brain Res. 1982;45:233–42.

    CAS  PubMed  Google Scholar 

  2. Nagao S, Kitazawa H. Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience. 2003;118:563–70.

    Article  CAS  PubMed  Google Scholar 

  3. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys causes linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87:912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39:954–69.

    CAS  PubMed  Google Scholar 

  5. Dean P, Porrill J, Ekerot CF, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11:30–43.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes J Neurophysiol. 1998;80:832–48.

    CAS  PubMed  Google Scholar 

  7. Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM. Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci. 2003;23:9742–51.

    CAS  PubMed  Google Scholar 

  8. Hirata Y, Highstein SM. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol. 2001;85:2267–88.

    CAS  PubMed  Google Scholar 

  9. Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM. Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neuroreport. 2004;15:1007–11.

    Article  CAS  PubMed  Google Scholar 

  10. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.

    Article  CAS  PubMed  Google Scholar 

  11. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  13. Ito M. The cerebellum and neural control. Raven Press; 1984.

  14. Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102.

    Article  CAS  PubMed  Google Scholar 

  15. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    CAS  PubMed  Google Scholar 

  16. Ito M. The cerebellum: brain for an implicit self. Financial Press; 2012.

  17. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  CAS  PubMed  Google Scholar 

  18. Hirano T. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci Lett. 1990;119:141–4.

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai M. Synaptic modification of parallel fibre - Purkinje cell transmission in in virto guinea-pig cerebellar slices. J Physiol. 1987;394:463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakurai M. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci U S A. 1990;87:3383–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagao S, Ito M. Subdural application of hemoglobin to the cerebellum blocks vestibuloocular reflex adaptation. Neuroreport. 1991;2:193–6.

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Smith SS, McElligott JG. Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning. J Neourophysiol. 1995;74:489–94.

    CAS  Google Scholar 

  23. De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, Oberdick J. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.

    Article  CAS  PubMed  Google Scholar 

  24. Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI. Reevaluating the role of LTD in cerebellar motor learning. Neuron. 2011;70:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D'Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, Prestori F, Pedrocchi A, Ros E. Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. Cerebellum. 2015;15:1–13.

    Google Scholar 

  26. D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–87.

    PubMed  Google Scholar 

  27. D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E. Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res. 2005;148:69–80.

    Article  PubMed  Google Scholar 

  28. D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol. 2009;587:5843–57.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robberechts Q, Wijnants M, Giugliano M, De Schutter E. Long-term depression at parallel fiber to Golgi cell synapses. J Neurophysiol. 2010;104:3413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bender VA, Pugh JR, Jahr CE. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci. 2009;29:10974–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soler-Llavina GJ, Sabatini BL. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci. 2006;9:798–806.

    Article  CAS  PubMed  Google Scholar 

  32. Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hirano T, Yamazaki Y, Nakamura Y. LTD, RP, and motor learning. Cerebellum. 2015;15:51–3.

    Article  Google Scholar 

  34. Galiana HL, Outerbridge JS. A bilateral model for central neural pathways in vestibuloocular reflex. J Neurophysiol. 1984;51:210–41.

    CAS  PubMed  Google Scholar 

  35. Galiana HL, Smith HLH, Katsarkas A. Modelling non-linearities in the vestibuloocular reflex (VOR) after unilateral or bilateral loss of peripheral vestibular function. Exp Brain Res. 2001;137:369–86.

    Article  CAS  PubMed  Google Scholar 

  36. Lisberger SG, Sejnowski T. Motor learning in a recurrent neural network model based on the vestibulo-ocular reflex. Nature. 1992;360:159–61.

    Article  CAS  PubMed  Google Scholar 

  37. Tabata H, Yamamoto K, Kawato M. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. J Neurophysiol. 2002;87:2176–89.

    Article  PubMed  Google Scholar 

  38. Hirata Y, Takeuchi I, Highstein SM. A dynamical model for the vertical vestibuloocular reflex and optokinetic response in primate. Neurocomputing. 2003;52-54:531–40.

    Article  PubMed  Google Scholar 

  39. Yamazaki T, Nagao S, Lennon W, Tanaka S. Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc Natl Acad Sci U S A. 2015;112:3541–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inagaki K, Hirata Y. The model of vestibuloocular reflex explicitly describing cerebellar neuronal network model, Institute of Electronics. Information and Communication Engineers. 2007;J90:1293–304. In Japanese

    Google Scholar 

  41. Inagaki K, Kobayashi S, Hiata Y. Analysis of frequency selective vestibuloocular reflex motor learning using cerebellar spiking neuron network model. Institute of Electronics, Information and Communication Engineers. 2011;J91:919–28. In Japanese

    Google Scholar 

  42. Eccles JC, Ito M, Szentagothai, J. The cerebellum as a neuronal machine. Springer-Verlag; 1967.

  43. D'Angelo E, De Filippi G, Rossi P, Taglietti V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol. 1995;484:397–413.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Galliano E, Mazzarello P, D'Angelo E. Discovery and rediscoveries of Golgi cells. J Physiol. 2010;588:3639–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol. 1996;497:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lisberger SG, Fuchs AF. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiology. 1978;41:764–77.

    CAS  PubMed  Google Scholar 

  47. Dieudonne S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol. 1998;510:845–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Llano I, Gerschenfeld HM. Inhibitory synaptic currents in stellate cells of rat cerebellar slices. J Physiol. 1993;468:177–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaneda M, Farrant M, Cull-Candy SG. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol. 1995;485:419–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequence(s). Behav and Brain Science. 1996;19:368–83.

    Article  Google Scholar 

  51. Vincent P, Marty A. Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. J Physiol. 1996;494:183–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci. 2000;20:5516–25.

    CAS  PubMed  Google Scholar 

  53. Hirata Y, Blazquez PM, Inagaki K, Furuta K, Highstein SM. Flocculus Purkinje cell complex spikes during acute motor learning of the horizontal vestibuloocular reflex in squirrel monkeys. Soc for Neurosci. 2007:805–6.

  54. Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation. 1998;8:3–30.

    Article  Google Scholar 

  55. Ogasawara H, Doi T, Kawato M. System biology perspectives on cerebellar long-term depression. Neurosignals. 2008;16:300–17.

    Article  CAS  PubMed  Google Scholar 

  56. Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity matched to behavioral function. Neuron. 2016;92:959–67.

    Article  CAS  PubMed  Google Scholar 

  57. Chen C, Thompson RF. Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice. Learn Mem. 1995;2:185–98.

    Article  CAS  PubMed  Google Scholar 

  58. Raymond JL, Lisberger SG. Neural learning rules for the vestibulo-ocular reflex. J Neurosci. 1998;21:9112–29.

    Google Scholar 

  59. Pastor A, De La Cruz RR, Baker R. Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation. J Neurophysiol. 1992;68:2003–15.

    CAS  PubMed  Google Scholar 

  60. Watanabe E. Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res. 1984;297:169–74.

    Article  CAS  PubMed  Google Scholar 

  61. Broussard DM, Kassardjian CD. Learning in a simple motor system. Learn Mem. 2004;11:127–36.

    Article  PubMed  Google Scholar 

  62. Broussard DM, Titley HK, Antflick J, Hampson DR. Motor learning in the VOR: the cerebellar component. Exp Brain Res. 2011;210:451–63.

    Article  PubMed  Google Scholar 

  63. Wada N, Funabiki K, Nakanishi S. Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning. Proc Natl Acad Sci U S A. 2014;8:5373–8.

    Article  Google Scholar 

  64. Dean P, Porrill J. Adaptive-filter models of the cerebellum: computational analysis. Cerebellum. 2008;7:567–71.

    Article  PubMed  Google Scholar 

  65. Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. J Physiol. 2011;589:3459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–40.

    Article  PubMed  Google Scholar 

  67. Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol. 2002;88:3194–207.

    Article  CAS  PubMed  Google Scholar 

  68. Titley HK, Hansel C. Asymmetries in cerebellar plasticity and motor learning. Cerebellum. 2015:1–6.

  69. Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45:195–206.

    Article  CAS  PubMed  Google Scholar 

  70. Fujita M. Simulation of adaptive modification of the vestibulo-ocular reflex with an adaptive filter model of the cerebellum. Biol Cybern. 1982;45:207–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the late Prof. Stephen Highstein for his valuable comments. The authors also thank Dr. Josh Bassett for proofreading the manuscript. This study was supported in part by a JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (24300115, YH) and a Grant-in-Aid for Young Scientists (B) (15K16086 and 17K12781, KI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Inagaki.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inagaki, K., Hirata, Y. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation. Cerebellum 16, 827–839 (2017). https://doi.org/10.1007/s12311-017-0857-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0857-6

Keywords

Navigation