Skip to main content
Log in

Frequency-Dependent Reliability of Spike Propagation Is Function of Axonal Voltage-Gated Sodium Channels in Cerebellar Purkinje Cells

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiological Review. 2011;91:555–602.

    Article  CAS  Google Scholar 

  2. Wu KY, Zhou XP, Luo ZG. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells. Mol Brain. 2010;3:18.

    Article  PubMed  Google Scholar 

  3. Clark BA, Monsivais P, Branco T, London M, Hausser M. The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci. 2005;8:137–9.

    Article  PubMed  CAS  Google Scholar 

  4. Colbert CM, Pan E. Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci. 2002;5:533–8.

    Article  PubMed  CAS  Google Scholar 

  5. Coombs JS, Curtis DR, Eccles JC. The interpretation of spike potentials of motoneurones. J Physiol Lond. 1957;139:198–231.

    PubMed  CAS  Google Scholar 

  6. Davie JT, Clark BA, Hausser M. The origin of the complex spike in cerebellar Purkinje cells. J Neurosci. 2008;28:7599–609.

    Article  PubMed  CAS  Google Scholar 

  7. Fuortes MGF, Frank K, Becker MC. Steps in the production of motor neuron spikes. J Gen Physiol. 1957;40:735–52.

    Article  PubMed  CAS  Google Scholar 

  8. Hausser M, Stuart G, Racca C, Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 1995;15:637–47.

    Article  PubMed  CAS  Google Scholar 

  9. Hu W, Tian C, Li T, Yang P, Hou H, Shu YS. Distinct contribution of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci. 2009;12:996–1002.

    Article  PubMed  CAS  Google Scholar 

  10. Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci. 2008;11:178–86.

    Article  PubMed  CAS  Google Scholar 

  11. Kuba H, Ishii TM, Ohmori H. Axonal site of spike initiation enhances auditory coincidence detection. Nature. 2006;444:1069–72.

    Article  PubMed  CAS  Google Scholar 

  12. Meeks JP, Mennerick S. Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol. 2007;97:3460–72.

    Article  PubMed  Google Scholar 

  13. Palmer LM, Clark BA, Grundemann J, Roth A, Stuart GJ, Hausser M. Initiation of simple and complex spikes in cerebellar Purkinje cells. J Physiol Lond. 2010;588:1709–17.

    Article  PubMed  CAS  Google Scholar 

  14. Chen N, Yu J, Qian H, Ge R, Wang JH. Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One. 2010;5(7):e11868.

    Article  PubMed  Google Scholar 

  15. Engel D, Jonas P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron. 2005;45:405–17.

    Article  PubMed  CAS  Google Scholar 

  16. Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Mol Brain. 2009;2:24.

    Article  PubMed  Google Scholar 

  17. Hodgkin AL, Huxley AF. Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci. 1952;140:177–83.

    Article  PubMed  CAS  Google Scholar 

  18. Huxley AF, Stampfli R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol Lond. 1949;108:315–39.

    Google Scholar 

  19. Khaliq ZM, Raman IM. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci. 2005;25:454–63.

    Article  PubMed  CAS  Google Scholar 

  20. Monsivais P, Clark BA, Roth A, Hausser M. Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci. 2005;25:464–72.

    Article  PubMed  CAS  Google Scholar 

  21. Stuart G, Spruston N, Sakmann B, Hausser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 1997;20:125–31.

    Article  PubMed  CAS  Google Scholar 

  22. Debanne D, Guerineau NC, Gahwiler BH, Thompson SM. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature. 1997;389:286–9.

    Article  PubMed  CAS  Google Scholar 

  23. Khaliq ZM, Raman IM. Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci. 2006;26:1935–44.

    Article  PubMed  CAS  Google Scholar 

  24. Meeks JP, Mennerick S. Selective effects of potassium elevations on glutamate signaling and action potential conduction in hippocampus. J Neurosci. 2004;24:197–206.

    Article  PubMed  CAS  Google Scholar 

  25. Debanne D. Information processing in the axon. Nat Rev Neurosci. 2004;5:304–16.

    Article  PubMed  CAS  Google Scholar 

  26. Eccles JC, Sasaki K, Strata P. Interpretation of the potential fields generated in the cerebellar cortex by a mossy fibre volley. Exp Brain Res. 1967;3:58–80.

    PubMed  CAS  Google Scholar 

  27. Harvey RJ, Porter R, Rawson JA. The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey’s cerebellum. J Physiol Lond. 1977;271:515–36.

    PubMed  CAS  Google Scholar 

  28. Llinas R, Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol Lond. 1980;305:171–95.

    PubMed  CAS  Google Scholar 

  29. Aldrich RW, Corey DP, Stevens CF. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983;306:436–41.

    Article  PubMed  CAS  Google Scholar 

  30. Chen N, Chen X, Yu J, Wang J-H. After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006;346:938–45.

    Article  PubMed  CAS  Google Scholar 

  31. Goldman L. Stationarity of sodium channel gating kinetics in excised patches from neuroblastoma N1E 115. Biophys J. 1995;69:2364–8.

    Article  PubMed  CAS  Google Scholar 

  32. Chen N, Chen X, Wang J-H. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci. 2008;121:2961–71.

    Article  PubMed  CAS  Google Scholar 

  33. Ge R, Qian H, Wang JH. Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain. 2011;4:19.

    Article  PubMed  Google Scholar 

  34. Wang J-H. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003;60:53–8.

    Article  PubMed  Google Scholar 

  35. Yu J, Qian H, Wang JH. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012;5:26.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang F, Liu B, Lei Z, Wang J. mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012;5:20.

    Article  PubMed  CAS  Google Scholar 

  37. Chen N, Zhu Y, Gao X, Guan S, Wang J-H. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006;346:281–7.

    Article  PubMed  CAS  Google Scholar 

  38. Hockberger PE, Tseng H-Y, Connor JA. Development of rat cerebellar Purkinje cells: electrophysiological properties following acute isolation and in long-term culture. J Neurosci. 1989;9:2258–71.

    PubMed  CAS  Google Scholar 

  39. McKay BE, Turner RW. Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol Lond. 2005;567:829–50.

    Article  PubMed  CAS  Google Scholar 

  40. Qi Y et al. Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently. Biochem Biophys Res Commun. 2009;381:129–33.

    Article  PubMed  CAS  Google Scholar 

  41. Jaeger D, Bower JM. Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: an intracellular in vitro and in vivo investigation. Exp Brain Res. 1994;100:200–14.

    Article  PubMed  CAS  Google Scholar 

  42. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, et al. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci. 2005;8:202–11.

    Article  PubMed  CAS  Google Scholar 

  43. Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008;121:2951–60.

    Article  PubMed  CAS  Google Scholar 

  44. Yu J, Qian H, Chen N, Wang JH. Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011;6:e25219.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang G, Gao Z, Guan S, Zhu Y, Wang JH. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs. Mol Brain. 2013;6:2.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao J, Wang D, Wang J-H. Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Mol Brain. 2012;5(1):10.

    Article  Google Scholar 

  47. Mantegazza M, Franceschetti S, Avanzini G. Anemone toxin (ATX II)-induced increase in persistent sodium current: effects on the firing properties of rat neocortical pyramidal neurones. J Physiol Lond. 1998;507(Pt 1):105–16.

    Article  PubMed  CAS  Google Scholar 

  48. Rathmayer W. Anemone toxin discriminates between ionic channels for receptor potential and for action potential production in a sensory neuron. Neurosci Lett. 1979;13:313–8.

    Article  PubMed  CAS  Google Scholar 

  49. Wang J-H, Kelly PT. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol Lond. 2001;533:407–22.

    Article  PubMed  CAS  Google Scholar 

  50. Mackenzie PJ, Umemiya M, Murphy TH. Ca2+ imaging of CNS axons in culture indicates reliable coupling between single action potentials and distal functional release sites. Neuron. 1996;16:783–95.

    Article  PubMed  CAS  Google Scholar 

  51. Foust A, Popovic M, Zecevic D, McCormick DA. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci. 2010;30:6891–902.

    Article  PubMed  CAS  Google Scholar 

  52. Wang JH, Yang Z, Qian H, Chen N. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Biophys J. 2013;104:330a.

    Article  Google Scholar 

Download references

Acknowledgments

Yang works on experimental analyses. Wang contributes to project design and manuscript writing. This study is supported by the National Basic Research Program (2013CB531304 and 2011CB504405) and Natural Science Foundation China (30990261 and 81171033) to JHW.

Conflict of Interest

Authors claim there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hui Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(RTF 11788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Wang, JH. Frequency-Dependent Reliability of Spike Propagation Is Function of Axonal Voltage-Gated Sodium Channels in Cerebellar Purkinje Cells. Cerebellum 12, 862–869 (2013). https://doi.org/10.1007/s12311-013-0499-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0499-2

Keywords

Navigation