Skip to main content
Log in

Topography of Purkinje Cells and Other Calbindin-Immunoreactive Cells Within Adult and Hatchling Turtle Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The turtle's cerebellum (Cb) is an unfoliated sheet, so the topography of its entire cortex can be easily studied physiologically by optical recordings. However, unlike the mammalian Cb, little is known about the topography of turtle Purkinje cells (PCs). Here, topography was examined using calbindin-D28K immunohistochemistry of adult and hatchling turtles (Trachemys scripta elegans, 2.5–15 cm carapace length). Each Cb was flattened between two Sylgard sheets and fixed in paraformaldehyde. Sections (52 µm thick) were cut parallel to the flattened cortex (tangential), resulting in calbindin-immunolabeled PCs being localized to three to six sections for each turtle. PC position and size were quantified using Neurolucida Image Analysis system. Although hatchling Cb were medial-laterally narrower (3.0 vs. 6.5 mm) and rostral-caudally shorter (2.5 vs. 5.5 mm) than adult Cb, both averaged near 15,000 PCs distributed uniformly. Hatchling PCs were smaller than adult PCs (178 vs. 551 µm2) and more densely packed (2,180 vs. 625 cells/mm2). Calbindin immunoreactivity also labeled non-PCs along the Cb's marginal rim and its caudal pole. Many of these were very small (22.9 µm2) ovoid-shaped cells clustered together, possibly proliferating external granule layer cells. Other labeled cells were larger and fusiform-shaped (12.6 × 33.4 µm) adjacent to inner granule cells along the marginal rim, suggestive of migrating cells. It is not known whether these are new neurons being generated within the adult and hatchling Cb and if they connect to efferent and afferent paths. Based on these anatomical findings, we suggest that unique physiological features may exist along the rim of the turtle Cb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson CW, Keifer J (1997) The cerebellum and red nucleus are not required for in vitro classical conditioning of the turtle abducens nerve response. J Neurosci 17:9736–9745

    CAS  PubMed  Google Scholar 

  2. Keifer J, Armstrong KE, Houk JC (1995) In vitro classical conditioning of abducens nerve discharge in turtles. J Neurosci 15:5036–5048

    CAS  PubMed  Google Scholar 

  3. Reali C, Russo RE (2005) An integrated spinal cord-hindlimbs preparation for studying the role of intrinsic properties in somatosensory information processing. J Neurosci Methods 142:317–326

    Article  PubMed  Google Scholar 

  4. Senseman DM (1996) Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes. Vis Neurosci 13:963–977

    Article  CAS  PubMed  Google Scholar 

  5. Tolbert DL, Conoyer B, Ariel M (2004) Quantitative analysis of granule cell axons and climbing fiber afferents in the turtle cerebellar cortex. Anat Embryol 209:49–58

    Article  CAS  PubMed  Google Scholar 

  6. Chesler M, Chan CY (1988) Stimulus-induced extracellular pH transients in the in vitro turtle cerebellum. Neuroscience 27:941–948

    Article  CAS  PubMed  Google Scholar 

  7. Krizaj D, Rice ME, Wardle RA, Nicholson C (1996) Water compartmentalization and extracellular tortuosity after osmotic changes in cerebellum of Trachemys scripta. J Physiol 492:887–896

    CAS  PubMed  Google Scholar 

  8. Okada YC, Huang JC, Rice ME, Tranchina D, Nicholson C (1994) Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis. J Neurophysiol 72:742–753

    CAS  PubMed  Google Scholar 

  9. Perez-Pinzon MA, Rosenthal M, Lutz PL, Sick TJ (1992) Anoxic survival of the isolated cerebellum of the turtle Pseudemis scripta elegans. J. Comp Physiol, B. Biochem Syst Environ Physiol 162:68–73

    CAS  Google Scholar 

  10. Brown ME, Ariel M (2009) Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. J Neurophysiol 101:474–490

    Article  PubMed  Google Scholar 

  11. Martin J, Ariel M (2005) Localization of GABA ([gamma]-aminobutyric acid) markers in the turtle's basal optic nucleus. Brain Res 1066:109–119

    CAS  PubMed  Google Scholar 

  12. Rosenberg AF, Ariel M (1990) Visual-response properties of neurons in turtle basal optic nucleus in vitro. J Neurophysiol 63:1033–1045

    CAS  PubMed  Google Scholar 

  13. Graham RC Jr, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    CAS  PubMed  Google Scholar 

  14. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  Google Scholar 

  15. Larsell O (1932) The cerebellum of reptiles: chelonians and alligator. J Comp Neurol 41:59–94

    Article  Google Scholar 

  16. Yan XX, Garey LJ (1998) Complementary distributions of calbindin, parvalbumin and calretinin in the cerebellar vermis of the adult cat. J Hirnforsch 39:9–14

    CAS  PubMed  Google Scholar 

  17. Fortin M, Marchand R, Parent A (1998) Calcium-binding proteins in primate cerebellum. Neurosci Res 30:155–168

    Article  CAS  PubMed  Google Scholar 

  18. Scotti AL, Nitsch C (1992) Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28 k immunoreactivity. Anat Embryol 185:163–167

    Article  CAS  PubMed  Google Scholar 

  19. Sequier JM, Hunziker W, Richards G (1988) Localization of calbindin D28 mRNA in rat tissues by in situ hybridization. Neurosci Lett 86:155–160

    Article  CAS  PubMed  Google Scholar 

  20. Mutema GK, Rhoten WB (1994) Occurrence and localization of calbindin-D28K in kidney and cerebellum of the slider turtle, Trachemys scripta. Anat Rec 239:185–190

    Article  CAS  PubMed  Google Scholar 

  21. Bangma GC, ten Donkelaar HJ, Pellegrino A (1983) Cerebellar corticonuclear projections in the red-eared turtle Pseudemys scripta elegans. J Comp Neurol 215:258–274

    Article  CAS  PubMed  Google Scholar 

  22. Gerrits NM, Voogd J (1973) The distribution of the Purkinje cells in the cerebellum of testudo hermanni (turtle). Acta Morphol Neerl Scand 11:357–358

    Google Scholar 

  23. Whitney ER, Kempera TL, Rosenea DL, Baumana ML, Blatta GJ (2007) Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods 168:42–47

    Article  PubMed  Google Scholar 

  24. Bell CC, Meek J, Yang JY (2005) Immunocytochemical identification of cell types in the mormyrid electrosensory lobe. J Comp Neurol 483:124–142

    Article  PubMed  Google Scholar 

  25. Uray NJ, Gona AG (1999) Calbindin immunoreactivity in the auricular lobe and interauricular granular band of the cerebellum in bullfrogs. Brain Behav Evol 53:10–19

    Article  CAS  PubMed  Google Scholar 

  26. Kevetter GA, Leonard RB (1997) Use of calcium-binding proteins to map inputs in vestibular nuclei of the gerbil. J Comp Neurol 386:317–327

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez-Moldes I, Timmermans JP, Adriaensen D, De Groodt-Lasseel MH, Scheuermann DW, Anadon R (1990) Immunohistochemical localization of calbindin-D28K in the brain of a cartilaginous fish, the dogfish (Scyliorhinus canicula L.). Acta Anat 137:293–302

    Article  CAS  PubMed  Google Scholar 

  28. Fujii JT, Lucaj Z (1993) Calcium-binding proteins in the chick Edinger Westphal nucleus. Brain Res 605:200–206

    Article  CAS  PubMed  Google Scholar 

  29. Mugnaini E, Atluri RL, Houk JC (1974) Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli. J Neurophysiol 37:1–29

    CAS  PubMed  Google Scholar 

  30. Kunzle H (1983) Spinocerebellar projections in the turtle. Observations on their origin and terminal organization. Exp Brain Res 53:129–141

    Article  CAS  PubMed  Google Scholar 

  31. Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78:551–562

    Article  CAS  PubMed  Google Scholar 

  32. Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52

    Article  CAS  PubMed  Google Scholar 

  33. Brand S, Mugnaini E (1980) Pattern of distribution of acetylcholinesterase in the cerebellar cortex of the pond turtle, with emphasis on parallel fibers. A histochemical and biochemical study. Anat Embryol 158:271–287

    Article  CAS  PubMed  Google Scholar 

  34. Cruce WL, Nieuwenhuys R (1974) The cell masses in the brain stem of the turtle Testudo hermanni; a topographical and topological analysis. J Comp Neurol 156:277–306

    Article  CAS  PubMed  Google Scholar 

  35. Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  36. Voogd J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    Article  PubMed  Google Scholar 

  37. Chambers WW, Sprague JM (1955) Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to posture, both extrapyramidal and pyramidal. J Comp Neurol 103:105–130

    Article  CAS  PubMed  Google Scholar 

  38. Stamatakis A, Barbas H, Dermon CR (2004) Late granule cell genesis in quail cerebellum. J Comp Neurol 474:173–189

    Article  PubMed  Google Scholar 

  39. Uray NJ (1985) Early stages in the formation of the cerebellum in the frog. J Comp Neurol 232:129–142

    Article  CAS  PubMed  Google Scholar 

  40. Martin J, Chanasue L, Ariel M (2008) Neurogenesis in the turtle cerebellum. Soc Neurosci Abstr 32

  41. Zupanc GK, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233

    Article  CAS  PubMed  Google Scholar 

  42. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  43. Bedard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res 151:159–168

    Article  CAS  PubMed  Google Scholar 

  44. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80:2390–2394

    Article  CAS  PubMed  Google Scholar 

  45. Chetverukhin VK, Polenov AL (1993) Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. I. Ventricular zone cell proliferation. Cell Tissue Res 271:341–350

    Article  CAS  PubMed  Google Scholar 

  46. Polenov AL, Chetverukhin VK (1993) Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. II. Types of neuronal cells produced. Cell Tissue Res 271:351–362

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Canellas MM, Garcia-Verdugo JM (1996) Adult neurogenesis in the telencephalon of a lizard: a [3H] thymidine autoradiographic and bromodeoxyuridine immunocytochemical study. Brain Res Dev Brain Res 93:49–61

    Article  CAS  PubMed  Google Scholar 

  48. Zupanc GK, Horschke I, Ott R, Rascher GB (1996) Postembryonic development of the cerebellum in gymnotiform fish. J Comp Neurol 370:443–464

    Article  CAS  PubMed  Google Scholar 

  49. Maeyama K, Nakayasu H (2000) Postembryonic neurogenesis in zebrafish (Danio rerio) brain: presence of two different systems. Zoolog Sci 17:959–966

    Article  Google Scholar 

  50. Perez-Canellas MM, Font E, Garcia-Verdugo JM (1997) Postnatal neurogenesis in the telencephalon of turtles: evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs. Brain Res Dev Brain Res 101:125–137

    Article  CAS  PubMed  Google Scholar 

  51. Fernandez A, Radmilovich M, Trujillo-Cenoz O (2002) Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol 453:131–144

    Article  PubMed  Google Scholar 

  52. Radmilovich M, Fernandez A, Trujillo-Cenoz O (2003) Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. J Exp Biol 206:3085–3093

    Article  PubMed  Google Scholar 

  53. ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO (2003) Development and developmental disorders of the human cerebellum. J Neurol 250:1025–1036

    Article  PubMed  Google Scholar 

  54. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  CAS  PubMed  Google Scholar 

  55. Brown ME, Ariel M (2008) Stimulation of an eighth cranial nerve activates discrete bilateral regions of the lateral edge of the turtle cerebellum. Soc Neurosci Abstr 32

Download references

Acknowledgments

We thank Dr. John Martin for his help with the Neurolucida system and for comments on the manuscript. This work was supported by grant NS-46499 from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ariel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariel, M., Ward, K.C. & Tolbert, D.L. Topography of Purkinje Cells and Other Calbindin-Immunoreactive Cells Within Adult and Hatchling Turtle Cerebellum. Cerebellum 8, 463–476 (2009). https://doi.org/10.1007/s12311-009-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0123-7

Keywords

Navigation