Skip to main content
Log in

Spinocerebellar ataxias caused by polyglutamine expansions: A review of therapeutic strategies

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Six of the spinocerebellar ataxias (SCAs) are caused by expanded CAG trinucleotide repeats encoding polyglutamine tracts in different genes. Together with three other neurodegenerative diseases they represent the polyglutamine repeat disorders. These disorders share many pathological features beyond a common genetic mechanism. They are the subject of considerable research efforts to elucidate their basic pathophysiologies, with the hope of using this knowledge to develop disease modifying treatments. Here we examine the biology that underpins possible therapeutic strategies for the SCAs caused by CAG repeats and review supportive data from cell and animal models. Therapeutic strategies include silencing gene expression, increasing protein clearance, reducing the toxicity of the protein, influencing downstream pathways activated by the mutant protein and transplantation. We also consider strategies which have been tested in other polyglutamine diseases that may generalize to these SCAs. Finally, we review clinical trials and consider the problems of translating the increasing amount of promising laboratory data into human trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. La Spada AR, Wilson E, Lubahn DB, Harding AE, Fishbeck KH. Androgen Receptor Gene Mutations in Xlinked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rubinsztein DC. The molecular pathology of Huntington’s disease. Curr Medic Chem – Immunol, Endocr Metabolic Agents. 2003;3:329–40.

    Article  CAS  Google Scholar 

  3. Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse SCA1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–19.

    Article  PubMed  CAS  Google Scholar 

  4. Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, Burright EN, et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci. 1998;18:5508–16.

    PubMed  CAS  Google Scholar 

  5. Harper P. Huntington’s disease. 2nd ed. London: W.B. Saunders; 1996.

    Google Scholar 

  6. Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA, Wiener HW, et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell. 1997;91:753–63.

    Article  PubMed  CAS  Google Scholar 

  7. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–548.

    Article  PubMed  CAS  Google Scholar 

  8. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA. Intranuclear Neuronal inclusions in Huntington’s disease and dentatorubral pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis. 1998;4:387–97.

    Article  PubMed  CAS  Google Scholar 

  9. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington’s disease. Nature Genetics. 2004;6:585–95.

    Article  Google Scholar 

  10. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431(7010):805–10.

    Article  PubMed  CAS  Google Scholar 

  11. Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ. Hsp70 and Hsp40 attenuate formation of spherical an annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol. 2004;11:1215–22.

    Article  PubMed  CAS  Google Scholar 

  12. Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci. 2004;24(40):8853–61.

    Article  PubMed  CAS  Google Scholar 

  13. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.

    Article  PubMed  CAS  Google Scholar 

  14. Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: An alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6(12):919–30.

    Article  PubMed  CAS  Google Scholar 

  15. Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA. 2005;102(24):8472–7.

    Article  PubMed  CAS  Google Scholar 

  16. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, Paulson HL. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA. 2003;100:7195–200.

    Article  PubMed  CAS  Google Scholar 

  17. Ravikumar B, Sarkar S, Berger Z, Rubinsztein DC. The roles of the ubiquitin proteasome and autophagy-lysosome pathways in Huntington’s disease and related conditions. Clin Neurosci Res. 2003;3:141–8.

    Article  CAS  Google Scholar 

  18. Burnett B, Pittman R. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc Nat Acad Sci USA. 2005;102:4330–5.

    Article  PubMed  CAS  Google Scholar 

  19. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC. Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Mol Genetics. 2006;3:433–42.

    Google Scholar 

  20. Sarkar S, Floto RA, Berger Z, Imanisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170:1101–11.

    Article  PubMed  CAS  Google Scholar 

  21. Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, et al. Serine 776 of ataxin-1 is crucial for polyglutamine induced disease in SCA1 transgenic mice. Neuron. 2003;38:375–87.

    Article  PubMed  CAS  Google Scholar 

  22. Kaytor MD, Byam CE, Tousey SK, Stevens SD, Zoghbi HY, Orr HT. A cell-based screen for modulators of ataxin-1 phosphorylation. Hum Mol Genet. 2005;14:1095–105.

    Article  PubMed  CAS  Google Scholar 

  23. Cummings C, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001;10:1511–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rimoldi M, Servadio A, Zimarino V. Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res Bull. 2001;56:353–62.

    Article  PubMed  CAS  Google Scholar 

  25. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet. 2001;10(16):1307–15.

    Article  PubMed  CAS  Google Scholar 

  26. Davies JE, Sarkar S, Rubinsztein DC. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet. 2006;15:23–31.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med. 2004;10:148–54.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshida H, Yoshizawa T, Shibasaki F, Shoji S, Kanazawa I. Chemical chaperones reduce aggregate formation and cell death caused by truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis. 2002;10:88–99.

    Article  PubMed  CAS  Google Scholar 

  29. Green H. Human genetic diseases due to codon reiteration: Relationship to an evolutionary mechanism. Cell. 1993;74:955–6.

    Article  PubMed  CAS  Google Scholar 

  30. Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, et al. Suppression of aggregate formation and apoptosis by tansglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet. 1998;18:111–7.

    Article  PubMed  CAS  Google Scholar 

  31. Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, et al. Prolonged survival and decreased abnormal movements in a transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Med. 2002;8:143–9.

    Article  PubMed  CAS  Google Scholar 

  32. Lesort M, Lee M, Tucholski J, Johnson GV. Cystamine inhibits caspase activity. Implication for the treatment of polyglutamine disorders. J Biolog Chem. 2003;278:3825–30.

    Article  CAS  Google Scholar 

  33. Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Ymamda M, et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science. 2001;291:2423–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neurosci. 2000;2:157–63.

    CAS  Google Scholar 

  35. Steffan JS, Bodai L, Pallos J, Poleman M, McCampbell A, Apostol BL, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001;413:739–43.

    Article  PubMed  CAS  Google Scholar 

  36. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23(28):9418–27.

    PubMed  CAS  Google Scholar 

  37. Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005;280:556–63.

    PubMed  CAS  Google Scholar 

  38. Sanchez C, Xu P, Juo A, Kakizaka J, Blenis, Yuan J. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron. 1999;22:623–33.

    Article  PubMed  CAS  Google Scholar 

  39. Gervais FG, Singaraja S, Xanthoudakis CA, Gutekunst BR, Leavitt M, Metzler M, et al. Recruitment and activation of caspase-8 by the huntingtin-interacting protein hip-1 and a novel partner hippi. Nat Cell Biol. 2002;4:95–105.

    Article  PubMed  CAS  Google Scholar 

  40. Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, et al. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating bax and downregulating Bcl-x(L). Neurobiol Dis. 2006;21:333–45.

    Article  PubMed  CAS  Google Scholar 

  41. Lipinski M, Yuan J. Mechanisms of cell death in polyglutamine expansion diseases. Curr Opin Pharmacol. 2004;4:85–90.

    Article  PubMed  CAS  Google Scholar 

  42. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet. 2004;13(14):1407–20.

    Article  PubMed  CAS  Google Scholar 

  43. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1a-voltage-dependent calcium channel. Nat Genet. 1997;15:62–9.

    Article  PubMed  CAS  Google Scholar 

  44. Ryu H, Rosas HD, Hersch SM, Ferrante RJ. The therapeutic role of creatine in Huntington’s disease. Pharmacol Ther. 2005;108:193–207.

    Article  PubMed  CAS  Google Scholar 

  45. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000;6:797–801.

    Article  PubMed  CAS  Google Scholar 

  46. Beal MF, Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat Rev Neurosci. 2004;5:373–84.

    Article  PubMed  CAS  Google Scholar 

  47. Kim SJ, Kim TS, Hong S, Rhim H, Kim IY, Kang S. Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1 expressing cells. Neurosci Lett. 2003;348:21–24.

    Article  PubMed  CAS  Google Scholar 

  48. Van Dellen A, Deacon R, York D. Anterior cingulate cortical transplantation in transgenic Huntington’s disease mice. Brain Res Bull. 2001;56:313–18.

    Article  PubMed  Google Scholar 

  49. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain. 2003;127:65–72.

    Article  PubMed  Google Scholar 

  50. Kaemmerer W, Low W. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.

    Article  PubMed  CAS  Google Scholar 

  51. Berke SJ, Schmied FA, Brunt ER, Ellerby LM, Paulson HL. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem. 2003;89:908–18.

    Article  Google Scholar 

  52. Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF. Therapeutic effects of coenzyme q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci. 2002;22:1592–9.

    PubMed  CAS  Google Scholar 

  53. Craig K, Keers SM, Archibald K, Curtis A, Chinnery PF. Molecular epidemiology of spinocerebellar ataxia type 6. Ann Neurol. 2004;55:752–5.

    Article  PubMed  CAS  Google Scholar 

  54. Underwood BR, Broadhurst D, Dunn W, Ellis D, Michell AW, Vacher C, Mosedale D, Kell D, Barker R, Grainger DJ, Rubinsztein DC. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain. 2006;129(Pt 4):877–86.

    Article  PubMed  Google Scholar 

  55. Azulay JP, Blin O, Mestre D, Sangla I, Serratrice G. Contrast sensitivity improvement with sulfamethoxazole and trmethoprim in a patient with Machado-Joseph disease without spasticity. J Neurol Sci. 1994;123:95–9.

    Article  PubMed  CAS  Google Scholar 

  56. Correia M, Coutinho P, Silva MC, Guimaraes J, Amado J, Matos E. Evaluation of the effect of sulphametoxazole and trimethoprim in patients with Machado-Joseph disease. Rev Neurol. 1995;23(121):632–4.

    PubMed  CAS  Google Scholar 

  57. Schulte T, Mattern R, Berger K, Szymanski S, Klotz P, Kraus PH, Przuntek H, Schols L. Double-blind crossover trial of trmethoprim-sulfamethoxazole in spinocerebellar ataxia type 3. Arch Neurol. 2002;59:1044–5.

    Article  Google Scholar 

  58. Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K. Clinical trial of acetazolamide in SCA6, with assessment using the ataxia rating scale and body stabilometry. Acta Neurol Scand. 2001;104:44–7.

    Article  PubMed  CAS  Google Scholar 

  59. Monte TL, Rieder CR, Tort AB, Rockenback I, Pereira ML, Silveira I, et al. Use of fluoxetine for treatment of Machado-Joseph disease: An open-label study. Acta Neurol Scand. 2003;107:207–10.

    Article  PubMed  CAS  Google Scholar 

  60. Shirasaki H, Ishida C, Nakajima T, Kamei H, Koide T, Hukuhara N. A quantitative evaluation of spinocerebellar degeneration by an acoustic analysis – the effect of talitirelin hydrate on patients with Machado-Joseph disease. Rinsho Shinkeigaku. 2003;43:143–8.

    PubMed  Google Scholar 

  61. Takei A, Fukazawa T, Hamada T, Sohma H, Yabe I, Sasaki H, Tashiro K. Effects of tandospirone on ‘5-HT1A receptor associated symptoms’ in patients withMachado-Joseph disease: An open label study. Clin Neuropharmacol. 2004;27:9–13.

    Article  PubMed  CAS  Google Scholar 

  62. Ientile R, Caccamo D, Macaione V, Torre V, Macaione S. NMDA-evoked excitotoxicity increases tissue transglutaminase in cerebellar granule cells. Neuroscience. 2002;115:723–9.

    Article  PubMed  CAS  Google Scholar 

  63. Sakai T, Yasunobu A, Matsuishi T, Iwashita H. Tetrahydrobiopterin double-blind, crossover trial in Machado-Joseph disease. J Neurolog Sci. 1996;136:71–2.

    Article  CAS  Google Scholar 

  64. Liu CS, Hsu HM, Cheng WL, Hsieh M. Clinical and molecular events in patients with Machado-Joseph disease under lamotrigine therapy. Acta Neurol Scand. 2005;111:385–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Rubinsztein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, B.R., Rubinsztein, D.C. Spinocerebellar ataxias caused by polyglutamine expansions: A review of therapeutic strategies. Cerebellum 7, 215–221 (2008). https://doi.org/10.1007/s12311-008-0026-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0026-z

Key words

Navigation