Skip to main content

Advertisement

Log in

Mechanobiology of Cancer Stem Cells and Their Niche

  • Review
  • Published:
Cancer Microenvironment

Abstract

Though the existence of cancer stem cells remained enigmatic initially, over the time their participation in tumorigenesis and tumor progression has become highly evident. Today, they are also appreciated as the causal element for tumor heterogeneity and drug-resistance. Cancer stem cells activate a set of molecular pathways some of which are triggered by the unique mechanical properties of the tumor tissue stroma. A relatively new field called mechanobiology has emerged, which aims to critically evaluate the mechanical properties associated with biological events like tissue morphogenesis, cell-cell or cell-matrix interactions, cellular migration and also the development and progression of cancer. Development of more realistic model systems and biophysical instrumentation for observation and manipulation of cell-dynamics in real-time has invoked a hope for some novel therapeutic modalities against cancer in the future. This review discusses the fundamental concepts of cancer stem cells from an intriguing viewpoint of mechanobiology and some important breakthroughs to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cell

EMT:

Epithelial-mesenchymal transition

References

  1. Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283(15):9499–9503. https://doi.org/10.1074/jbc.R700043200

    Article  CAS  PubMed  Google Scholar 

  2. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126

    Article  CAS  PubMed  Google Scholar 

  3. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238. https://doi.org/10.1016/j.stem.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 3:891–906. https://doi.org/10.1016/j.cell.2009.10.027

    Article  CAS  Google Scholar 

  5. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. https://doi.org/10.1016/j.ccr.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Boyd NF, Rommens JM, Vogt K et al (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6(10):798–808. https://doi.org/10.1016/S1470-2045(05)70390-9

    Article  PubMed  Google Scholar 

  7. Daniels CE, Jett JR (2005) Does interstitial lung disease predispose to lung cancer? Curr Opin Pulm Med 11(5):431–437. https://doi.org/10.1097/01.mcp.0000170521.71497.ba

    Article  PubMed  Google Scholar 

  8. Broders-Bondon F, Ho-Bouldoires THN, Fernandez-Sanchez ME, Farge E (2018) Mechanotransduction in tumor progression: the dark side of the force. J Cell Biol 217(5):1571–1587. https://doi.org/10.1083/jcb.201701039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobs CR, Hayden H, Kwon RY (2012) Cell Mechanics in the laboratory. In: Scholl S (ed) Introduction to cell mechanics and mechanobiology. 1st edn. Garland Science, New York and London, pp 151–179

  10. McLane JS, Ligon LA (2016) Stiffened extracellular matrix and signaling from stromal fibroblasts via osteoprotegerin regulate tumor cell Invasionin a 3-D tumor in situ model. Cancer Microenviron 9:127–139. https://doi.org/10.1007/s12307-016-0188-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu Z, Li E, Guo Z et al (2016) Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces 8(39):25840–25847. https://doi.org/10.1021/acsami.6b08746

    Article  CAS  PubMed  Google Scholar 

  12. Duinen VV, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126. https://doi.org/10.1016/j.copbio.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  13. Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  PubMed  Google Scholar 

  14. Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735. https://doi.org/10.1126/science.1224676

    Article  CAS  PubMed  Google Scholar 

  15. Al-Hajj M, Wicha M, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh S, Hawkins C, Clarke I, Squire J (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  17. Luo Y, Dallaglio K, Chen Y et al (2012) Aldh1a isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30:2100–2113. https://doi.org/10.1002/stem.1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829. https://doi.org/10.1016/j.cell.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Kong D, Ahmad A et al (2012) Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 338(1):94–100. https://doi.org/10.1016/j.canlet.2012.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321. https://doi.org/10.1038/nrc1592

    Article  CAS  PubMed  Google Scholar 

  21. Tirino V, Desiderio V, Paino F et al (2012) Methods for cancer stem cell detection and isolation. Methods Mol Biol 879:513–529. https://doi.org/10.1007/978-1-61779-815-3_32

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Wu M, Han X et al (2015) High-throughput, label-free isolation of cancer stem cells on the basis of cell adhesion capacity. Angew Chem Int Ed Engl 54(37):10838–10842. https://doi.org/10.1002/anie.201505294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Babahosseini H, Ketene AN, Schmelz EM et al (2014) Biomechanical profile of cancer stem-like/tumor initiating cells derived from a progressive ovarian cancer model. Nanomedicine 10(5):1013–1019. https://doi.org/10.1016/j.nano.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  24. Mohammadalipour A, Burdick MM, Tees DFJ (2018) Deformability of breast cancer cells in correlation with surface markers and cell rolling. FASEB J 32(4):1806–1817. https://doi.org/10.1096/fj.201700762R

    Article  CAS  PubMed  Google Scholar 

  25. Sun J, Luo Q, Liu L et al (2016) Biomechanical profile of cancer stem like cells derived from MHCC97H cell lines. J Biomech 49(1):45–52. https://doi.org/10.1016/j.jbiomech.2015.11.007

    Article  PubMed  Google Scholar 

  26. Aponte PM, Caicedo A (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int 2017:5619472. https://doi.org/10.1155/2017/5619472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cabrera MC, Hollingsworth RE, Hurt EM (2015) Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 7(1):27–36. https://doi.org/10.4252/wjsc.v7.i1.27

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stemlike state. Proc Natl Acad Sci U S A 108(19):7950–7955. https://doi.org/10.1073/pnas.1102454108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Borovski T, Melo FSE, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639. https://doi.org/10.1158/0008-5472.CAN-10-3220

    Article  CAS  PubMed  Google Scholar 

  30. Alison MR, Lim S, Nicholoson L (2010) Cancer stem cells: problems for therapy? J Pathol 223:147–161. https://doi.org/10.1002/path.2793

    Article  CAS  PubMed  Google Scholar 

  31. Pang M-F, Siedlik MJ, Han S et al (2016) Tissue stiffness and hypoxia modulate the integrin-linked kinase ILK to control breast cancer stem-like cells. Cancer Res 76:5277–5287. https://doi.org/10.1158/0008-5472.CAN-16-0579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsui WH (2016) Cancer stem cell signaling pathways. Medicine 95(1):S8–S19. https://doi.org/10.1097/MD.0000000000004765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varelas X, Miller BW, Sopko R et al (2010) The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 18(4):579–591. https://doi.org/10.1016/j.devcel.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  34. Varelas X, Sakuma R, Samavarchi-Tehrani P et al (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10(7):837–848. https://doi.org/10.1038/ncb1748

    Article  CAS  PubMed  Google Scholar 

  35. McMurray RJ, Dalby MJ, Tsimbouri PM (2015) Using biomaterials to study stem cell mechanotransduction, growth and differentiation. J Tissue Eng Regen Med 9(5):528–539. https://doi.org/10.1002/term.1957

    Article  PubMed  Google Scholar 

  36. Faulk DM, Johnson SA, Zhang L, Badylak SF (2014) Role of the extracellular matrix in whole organ engineering. J Cell Physiol 229(8):984–989. https://doi.org/10.1002/jcp.24532

    Article  CAS  PubMed  Google Scholar 

  37. Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101. https://doi.org/10.1016/S0140-6736(00)49915-0

  38. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176. https://doi.org/10.1016/j.ccr.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Wang MN, Zhao JZ, Zhang LS et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Correas JM, Tissier AM, Khairoune A et al. (2015) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology 275(1):280–289. https://doi.org/10.1148/radiol.14140567

  41. Boyd NF, Li Q, Melnichouk O et al (2014) Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS One 9(7):e100937. https://doi.org/10.1371/journal.pone.0100937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and diseases. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dasari S, Fang Y, Mitra AK (2018) Cancer associated fibroblasts: naughty neighbors that drive ovarian Cancer progression. Cancers 10(11):406. https://doi.org/10.3390/cancers10110406

    Article  PubMed Central  Google Scholar 

  44. Sriram G, Bigliardi PL, Bigliardi-Qi M (2015) Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 94:483–512. https://doi.org/10.1016/j.ejcb.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Wang JH (2011) Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 20:108–120. https://doi.org/10.1016/j.jtv.2009.11.004

    Article  PubMed  Google Scholar 

  46. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1(4):482–497

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiarugi P (2013) Cancer-associated fibroblasts and macrophages: friendly conspirators for malignancy. OncoImmunology 2(9):e25563. https://doi.org/10.4161/onci.25563

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ronca R, Van Ginderachter J, Turtoi A (2018) Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells. Curr Opin Oncol 30(1):45–53. https://doi.org/10.1097/CCO.0000000000000420

    Article  CAS  PubMed  Google Scholar 

  49. De VK, Rao L, De BE et al (2014) Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers (Basel) 6(3):1363–1381. https://doi.org/10.3390/cancers6031363

    Article  CAS  Google Scholar 

  50. Yeldag G, Rice A, Hernández ADR (2018) Chemoresistance and the self-maintaining tumor microenvironment. Cancers (Basel) 10(12):471. https://doi.org/10.3390/cancers10120471

    Article  Google Scholar 

  51. Zanotelli MR, Reinhart-King CA (2018) Mechanical forces in tumor angiogenesis. Adv Exp Med Biol 1092:91–112. https://doi.org/10.1007/978-3-319-95294-9_6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hynes RO, Naba A (2011) Overview of the Matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4(1):a004903–a004903. https://doi.org/10.1101/cshperspect.a004903

    Article  CAS  Google Scholar 

  53. Yue B (2014) Biology of the extracellular matrix: an overview. J Glaucoma 23(8):S20–S23. https://doi.org/10.1097/IJG.0000000000000108

    Article  PubMed  Google Scholar 

  54. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walker C, Mojares E, del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19(10):3028. https://doi.org/10.3390/ijms19103028

    Article  CAS  PubMed Central  Google Scholar 

  56. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178. https://doi.org/10.1242/dmm.004077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalli M, Stylianopoulos T (2018) Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front Oncol 8:55. https://doi.org/10.3389/fonc.2018.00055

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477

    Article  CAS  PubMed  Google Scholar 

  59. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812. https://doi.org/10.1038/nrm3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370. https://doi.org/10.1038/nm.2537

    Article  CAS  PubMed  Google Scholar 

  61. Ferretti S, Allegrini PR, Becquet MM, McSheehy PMJ (2009) Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 11:874–881. https://doi.org/10.1593/neo.09554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118:4731–4739. https://doi.org/10.1242/jcs.02605

    Article  CAS  PubMed  Google Scholar 

  63. Bao B, Azmi AS, Ali S et al (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 1826:272–296. https://doi.org/10.1016/j.bbcan.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumor metastasis. Nat Rev Cancer 14:430–439. https://doi.org/10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luis Alonso J, Goldmann WH (2016) Cellular mechanotransduction. AIMS Biophysics 3(1):50–62. https://doi.org/10.3934/biophy.2016.1.50

    Article  CAS  Google Scholar 

  66. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73. https://doi.org/10.1038/nrm2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang L, Zuo X, Xie K, Wei D (2017) The role of CD44 and cancer stem cells. Cancer Stem Cells 1692:31–42. https://doi.org/10.1007/978-1-4939-7401-6_3

    Article  CAS  Google Scholar 

  68. Kamble SC, Bapat SA (2013) Stem cell and cancer stem cell games on the ECM field. J Cancer Stem Cell Res 1:e1002. https://doi.org/10.14343/JCSCR.2013.1e1002

    Article  Google Scholar 

  69. Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7:18. https://doi.org/10.1186/s40169-018-0198-1

    Article  PubMed  PubMed Central  Google Scholar 

  70. Motegi H, Kamoshima Y, Terasaka S et al (2014) Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells. Neuropathology 34:378–385. https://doi.org/10.1111/neup.12117

    Article  CAS  PubMed  Google Scholar 

  71. Song WS, Yang YP, Huang CS et al (2016) Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc 79(10):538–545. https://doi.org/10.1016/j.jcma.2016.03.010

    Article  PubMed  Google Scholar 

  72. Toy KA, Valiathan RR, Nunez F, Kidwell KM et al (2015) Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat 150:9–18. https://doi.org/10.1007/s10549-015-3285-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shimada K, Anai S, Fujii T et al (2013) Syndecan-1 (CD138) contributes to prostate cancer progression by stabilizing tumour-initiating cells. J Pathol 231(4):495–504. https://doi.org/10.1002/path.4271

    Article  CAS  PubMed  Google Scholar 

  74. Lathia JD, Li M, Hall PE et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol 72:766–778. https://doi.org/10.1002/ana.23674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang C, Goel HL, Gao H et al (2015) A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes Dev 29:1–6. https://doi.org/10.1101/gad.253682.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Keire PA, Kang I, Wight TN (2017) Versican: role in cancer tumorigenesis. In: Brekken R, Stupack D (eds) Extracellular matrix in tumor biology. Biology of Extracellular Matrix. Springer, Cham, pp 51–74

    Chapter  Google Scholar 

  77. Yu Q, Xue Y, Liu J, Xi Z, Li Z, Liu Y (2018) Fibronectin promotes the malignancy of glioma stem-like cells via modulation of cell adhesion, differentiation, proliferation and chemoresistance. Front Mol Neurosci 11:130. https://doi.org/10.3389/fnmol.2018.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stutchbury B, Atherton P, Tsang R et al (2017) Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130:1612–1624. https://doi.org/10.1242/jcs.195362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Begum A, Ewachiw T, Jung C et al (2017) The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS One 12:e0180181. https://doi.org/10.1371/journal.pone.0180181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155:505–510. https://doi.org/10.1083/jcb.200108077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41. https://doi.org/10.1186/s12943-017-0600-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  CAS  PubMed  Google Scholar 

  83. Wang Z, Wang N, Li W et al (2014) Caveolin-1 mediates chemoresistance in breast cancer stem cells via beta-catenin/ABCG2 signaling pathway. Carcinogenesis 35:2346–2356. https://doi.org/10.1093/carcin/bgu155

    Article  CAS  PubMed  Google Scholar 

  84. Moreno-Vicente R, Pavón DM, Martín-Padura I et al (2018) Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep 25(6):1622–1635.e6. https://doi.org/10.1016/j.celrep.2018.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Acerbi I, Cassereau L, Dean I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7:1120–1134. https://doi.org/10.1039/c5ib00040h

    Article  CAS  Google Scholar 

  86. Cordenonsi M, Zanconato F, Azzolin L et al (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772. https://doi.org/10.1016/j.cell.2011.09.048

    Article  CAS  PubMed  Google Scholar 

  87. Basu-Roy U, Bayin NS, Rattanakorn K et al (2015) Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun 6:6411. https://doi.org/10.1038/ncomms7411

    Article  CAS  PubMed  Google Scholar 

  88. Park JH, Shin JE, Park HW (2018) The role of Hippo pathway in cancer stem cell biology. Mol Cell 41:83–92. https://doi.org/10.14348/molcells.2018.2242

    Article  CAS  Google Scholar 

  89. Triantafillu U et al (2017) Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Int J Oncol 50:993–1001. https://doi.org/10.3892/ijo.2017.3865

    Article  CAS  PubMed  Google Scholar 

  90. Hieda M (2017) Implications for diverse functions of the LINC complexes based on the structure. Cells 6(1):3. https://doi.org/10.3390/cells6010003

    Article  CAS  PubMed Central  Google Scholar 

  91. Constantinescu D, Gray HL, Sammak PJ et al (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185. https://doi.org/10.1634/stemcells.2004-0159

    Article  CAS  PubMed  Google Scholar 

  92. Matsumoto A, Hieda M, Yokoyama Y et al (2015) Global loss of a nuclear lamina component, Lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med 4:1547–1557. https://doi.org/10.1002/cam4.495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tan Y, Tajik A, Chen J et al (2014) Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat Commun 5:717–728. https://doi.org/10.1038/ncomms5619

    Article  CAS  Google Scholar 

  94. Chen J, Kumar S (2017) Biophysical regulation of cancer stem/initiating cells: implications for disease mechanisms and translation. Curr Opin Biomed Eng 1:87–95. https://doi.org/10.1016/j.cobme.2017.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  95. Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32(7):1256–1268. https://doi.org/10.1016/j.biotechadv.2014.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Irimia D, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol 1(8–9):506–512. https://doi.org/10.1039/b908595e

    Article  CAS  Google Scholar 

  97. Gossett DR, Tse HTK, Lee SA et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109:7630–7635. https://doi.org/10.1073/pnas.1200107109

    Article  PubMed  PubMed Central  Google Scholar 

  98. Darling EM, Di Carlo D (2015) High-throughput assessment of cellular mechanical properties. Annu Rev Biomed Eng 17:35–62. https://doi.org/10.1146/annurev-bioeng-071114-040545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yongming Xu, Shujuan Xu, Zhi Gao et al. (2018) Degree of endplate chondrocyte degeneration in different tension regions during mechanical stimulation. Mol Med Rep 17(3):4415–4421. https://doi.org/10.3892/mmr.2018.8435

  100. Ordikhani F, Kim Y, Zustiak SP (2015) The role of biomaterials on cancer stem cell enrichment and behavior. JOM 67(11):2543–2549. https://doi.org/10.1007/s11837-015-1626-y

    Article  CAS  Google Scholar 

  101. Baker EL, Bonnecaze RT, Zaman MH (2009) Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J 97(4):1013–1021. https://doi.org/10.1016/j.bpj.2009.05.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Serwane F, Mongera A, Rowghanian P et al (2009) In vivo quantification of spatially varying mechanical properties in developing tissues. Nat Methods 97(4):1013–1021. https://doi.org/10.1038/nmeth.4101

    Article  CAS  Google Scholar 

  103. Barker HE, Bird D, Lang G, Erler JT (2013) Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol Cancer Res 11(11):1425–1436. https://doi.org/10.1158/1541-7786.MCR-13-0033-T

    Article  CAS  PubMed  Google Scholar 

  104. Venkatesh V, Nataraj R, Thangaraj GS et al (2018) Targeting notch signalling pathway of cancer stem cells. Stem Cell Investig 5:5. https://doi.org/10.21037/sci.2018.02.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lang T, Ding X, Kong L et al (2018) NFATC2 is a novel therapeutic target for colorectal cancer stem cells. Onco Targets Ther 11:6911–6924. https://doi.org/10.2147/OTT.S169129

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang S, Zhang H, Ghia EM et al (2019) Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proc Natl Acad Sci USA 116(4):1370–1377. https://doi.org/10.1073/pnas.1816262116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cazet AS, Hui MN, Elsworth BL et al (2018) Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun 9:2897. https://doi.org/10.1038/s41467-018-05220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Intramural Research Grant (A-523) from AIIMS, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pandey.

Ethics declarations

The manuscript does not contain clinical studies or patient data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy Choudhury, A., Gupta, S., Chaturvedi, P.K. et al. Mechanobiology of Cancer Stem Cells and Their Niche. Cancer Microenvironment 12, 17–27 (2019). https://doi.org/10.1007/s12307-019-00222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-019-00222-4

Keywords

Navigation