Skip to main content

Advertisement

Log in

Inflammation and uPAR-Expression in Colorectal Liver Metastases in Relation to Growth Pattern and Neo-adjuvant Therapy

  • Published:
Cancer Microenvironment

Abstract

Proteolytic activity and inflammation in the tumour microenvironment affects cancer progression. In colorectal cancer (CRC) liver metastases it has been observed that three different immune profiles are present, as well as proteolytic activity, determined by the expression of urokinase-type plasminogen activator (uPAR).The main objectives of this study were to investigate uPAR expression and the density of macrophages (CD68) and T cells (CD3) as markers of inflammation in resected CRC liver metastases, where patients were neo-adjuvantly treated with chemotherapy with or without the angiogenesis inhibitor bevacizumab. Chemonaive patients served as a control group. The markers were correlated to growth patterns (GP) of liver metastases, i.e. desmoplastic, pushing and replacement GP. It was hypothesised that differences in proteolysis and inflammation could reflect tumour specific growth and therapy related changes in the tumour microenvironment. In chemonaive patients, a significantly higher level of uPAR was observed in desmoplastic liver metastases in comparison to pushing GP (p = 0.01) or replacement GP (p = 0.03). A significantly higher density of CD68 was observed in liver metastases with replacement GP in comparison to those with pushing GP (p = 0.01). In liver metastases from chemo treated patients, CD68 density was significantly higher in desmoplastic GP in comparison to pushing GP (p = 0.03). In chemo and bevacizumab treated patients only a significant lower CD3 expression was observed in liver metastases with a mixed GP than in those with desmoplastic (p = 0.01) or pushing GP (p = 0.05). Expression of uPAR and the density of macrophages at the tumour margin of liver metastasis differ between GP in the untreated patients. A higher density of T cells was observed in the bevacizumab treated patients, when desmoplastic and pushing metastases were compared to liver metastases with a mix of the GP respectively, however no specific correlations between the immune markers of macrophages and T cells or GP of liver metastases could be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

EGFR:

Epidermal growth factor receptor

5-FU:

5-fluorouracil

GP:

Growth pattern

IHC:

Immunohistochemistry

mCRC:

Metastatic colorectal cancer

MMP:

Matrix metalloproteinase

PAI-1:

Plasminogen activator inhibitor – 1

ROI:

Region of interest

TRG:

Tumour regression grade

uPA:

Urokinase-type plasminogen activator

uPAR:

Urokinase-type plasminogen activator receptor

VEGF:

Vascular endothelial growth factor

References

  1. Christofori G (2006) New signals from the invasive front. Nature 441(7092):444–450

    Article  CAS  PubMed  Google Scholar 

  2. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  5. de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 13:118–137

    Article  PubMed  Google Scholar 

  6. de Visser KE, Coussens LM (2005) The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immunother 54(11):1143–1152

    Article  PubMed  Google Scholar 

  7. Raz Y, Erez N (2013) An inflammatory vicious cycle: fibroblasts and immune cell recruitment in cancer. Exp Cell Res 319(11):1596–1603

    Article  CAS  PubMed  Google Scholar 

  8. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Olson OC, Joyce JA (2013) Microenvironment-mediated resistance to anticancer therapies. Cell Res 23(2):179–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Galon J, Mlecnik B, Bindea G et al (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vidal-Vanaclocha F (2008) The prometastatic microenvironment of the liver. Cancer Microenviron 1(1):113–129

    Article  PubMed Central  PubMed  Google Scholar 

  12. Van den Eynden GG, Majeed AW, Illemann M et al (2013) The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res 73(7):2031–2043

    Article  PubMed  Google Scholar 

  13. Ploug M (2003) Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor. Curr Pharm Des 9(19):1499–1528

    Article  CAS  PubMed  Google Scholar 

  14. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):163–176

    Article  Google Scholar 

  15. Hu J, Jo M, Eastman BM, Gilder AS, Bui JD, Gonias SL (2014) uPAR induces expression of transforming growth factor beta and interleukin-4 in cancer cells to promote tumor-permissive conditioning of macrophages. Am J Pathol 184(12):3384–3393

    Article  CAS  PubMed  Google Scholar 

  16. Galon J, Pages F, Marincola FM et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vermeulen PB, Colpaert C, Salgado R et al (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195(3):336–342

    Article  CAS  PubMed  Google Scholar 

  18. Van den Eynden GG, Bird NC, Majeed AW, Van LS, Dirix LY, Vermeulen PB (2012) The histological growth pattern of colorectal cancer liver metastases has prognostic value. Clin Exp Metastasis 29(6):541–549

    Article  PubMed  Google Scholar 

  19. Nielsen K, Rolff HC, Eefsen RL, Vainer B (2014) The morphological growth patterns of colorectal liver metastases are prognostic for overall survival. Mod Pathol

  20. Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5(16):1760–1771

    Article  CAS  PubMed  Google Scholar 

  21. Illemann M, Bird N, Majeed A et al (2009) Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases. Int J Cancer 124:1860–1870

    Article  CAS  PubMed  Google Scholar 

  22. Ganesh S, Sier CFM, Griffioen G et al (1994) Prognostic relevance of plasminogen activators and their inhibitors in colorectal-cancer. Cancer Res 54(15):4065–4071

    CAS  PubMed  Google Scholar 

  23. Stephens RW, Nielsen HJ, Christensen IJ et al (1999) Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 91(10):869–874

    Article  CAS  PubMed  Google Scholar 

  24. Thurison T, Lomholt AF, Rasch MG et al (2010) A new assay for measurement of the liberated domain I of the urokinase receptor in plasma improves the prediction of survival in colorectal cancer. Clin Chem 56(10):1636–1640

    Article  CAS  PubMed  Google Scholar 

  25. Illemann M, Laerum OD, Hasselby JP et al (2014) Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer. Cancer Med 3(4):855–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Eefsen RL, Van den Eynden GG, Hoyer-Hansen G et al (2012) Histopathological growth pattern, proteolysis and angiogenesis in chemonaive patients resected for multiple colorectal liver metastases. J Oncol 2012:907971

    Article  PubMed Central  PubMed  Google Scholar 

  27. Halama N, Michel S, Kloor M et al (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71(17):5670–5677

    Article  CAS  PubMed  Google Scholar 

  28. Katz SC, Pillarisetty V, Bamboat ZM et al (2009) T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol 16(9):2524–2530

    Article  PubMed  Google Scholar 

  29. Turcotte S, Katz SC, Shia J et al (2014) Tumor MHC class I expression improves the prognostic value of T-cell density in resected colorectal liver metastases. Cancer Immunol Res 2(6):530–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Katz SC, Bamboat ZM, Maker AV et al (2013) Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 20(3):946–955

    Article  PubMed Central  PubMed  Google Scholar 

  31. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  Google Scholar 

  32. Heuff G, Oldenburg HS, Boutkan H et al (1993) Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother 37(2):125–130

    Article  CAS  PubMed  Google Scholar 

  33. Eefsen RL, Vermeulen PB, Christensen IJ et al (2015) Growth pattern of colorectal liver metastasis as a marker of recurrence risk. Clin Exp Metastasis 32(4):369–381

    Article  CAS  PubMed  Google Scholar 

  34. Rønne E, Høyer-Hansen G, Brünner N et al (1995) Urokinase receptor in breast cancer tissue extracts. Enzyme-linked immunosorbent assay with a combination of mono- and polyclonal antibodies. Breast Cancer Res Treat 33(3):199–207

    Article  PubMed  Google Scholar 

  35. Rubbia-Brandt L, Giostra E, Brezault C et al (2007) Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol 18(2):299–304

    Article  CAS  PubMed  Google Scholar 

  36. Eefsen RL et al. (2015) Microvessel density and endothelial cell proliferation levels in colorectal liver metastases from patients given neo-adjuvant cytotoxic chemotherapy and bevacizumab. In Revision IJC (ed)

  37. Plesner T, Ralfkiær E, Wittrup M et al (1994) Expression of the receptor for urokinase-type plasminogen activator in normal and neoplastic blood cells and hematopoietic tissue. Am J Clin Pathol 102(6):835–841

    CAS  PubMed  Google Scholar 

  38. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  39. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21(1):15–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Josephs DH, Bax HJ, Karagiannis SN (2015) Tumour-associated macrophage polarisation and re-education with immunotherapy. Front Biosci (Elite Ed) 7:293–308

    Google Scholar 

  41. Noguchi T, Ritter G, Nishikawa H (2013) Antibody-based therapy in colorectal cancer. Immunotherapy 5(5):533–545

    Article  CAS  PubMed  Google Scholar 

  42. Khazaeli MB, Conry RM, LoBuglio AF (1994) Human immune response to monoclonal antibodies. J Immunother Emphasis Tumor Immunol 15(1):42–52

    Article  CAS  PubMed  Google Scholar 

  43. Schneider-Merck T, Lammerts van Bueren JJ, Berger S et al (2010) Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J Immunol 184(1):512–520

    Article  CAS  PubMed  Google Scholar 

Download references

Grant Sponsor

This study was supported by The Capital Region of Denmark Foundation for Health Research (GHH), The Research Foundation of the Department of Oncology Rigshospitalet, The Danish Cancer Research Foundation, The Danish Cancer Society, unrestricted grant from Roche, The Politician J. Christensen and K. Christensen Foundation for the support of research in cancer and AIDS, The Hede Nielsens Family Foundation, The Erichsen Family Foundation, The Kristian Kjær born la Cour-Holmens Foundation, The Foundation of King Christian the 10th, The Foundation of Mimi og Victor Larsen, The Sigvald and Edith Rasmussen Foundation and The Villum Foundation (MI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Eefsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eefsen, R.L., Engelholm, L., Alpizar-Alpizar, W. et al. Inflammation and uPAR-Expression in Colorectal Liver Metastases in Relation to Growth Pattern and Neo-adjuvant Therapy. Cancer Microenvironment 8, 93–100 (2015). https://doi.org/10.1007/s12307-015-0172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-015-0172-z

Keywords

Navigation