Skip to main content

Advertisement

Log in

Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell’s Journey

  • Original Papers
  • Published:
Cancer Microenvironment

Abstract

Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].

Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.

In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to “mop up“ cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.

Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [911], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a ‘liquid biopsy,’ which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [1216].

The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient’s DNA or quantification of some biomarkers.

Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell’s ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.

In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med 18:883–891

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson E, Polette M, Gilles C (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mamm Gland Biol Neopl 15:261–273

    Google Scholar 

  3. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Guttery DS, Blighe K, Page K, Marchese SD, Hills A, Coombes RC, Stebbing J, Shaw JA (2013) Hide and seek: tell-tale signs of breast cancer lurking in the blood. Cancer Metastasis Rev 32:289–302

    PubMed  Google Scholar 

  5. Hayes DF, Allen J, Compton C, Gustavsen G, Leonard DG, McCormack R, Newcomer L, Pothier K, Ransohoff D, Schilsky RL, Sigal E, Taube SE, and Tunis SR (2013) Breaking a vicious cycle. Sci. Transl. Med. 5:196 cm6.

  6. Heppner GH (1993) Cancer cell societies and tumor progression. Stem Cells 11:199–203

    CAS  PubMed  Google Scholar 

  7. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nature Rev Cancer 12:323–334

    CAS  Google Scholar 

  8. Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21:42–49

    CAS  PubMed  Google Scholar 

  9. Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356:294–297

    CAS  PubMed  Google Scholar 

  10. Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, Abad BM, Sierra A, Boudinet A, Guinebretiere JM, Ricevuto E, Nogues C, Briffod M, Bieche I, Cherel P, Garcia T, Castronovo V, Teti A, Lidereau R, Driouch K (2008) A six-gene signature predicting breast cancer lung metastasis. Cancer Res 68:6092–6099

    CAS  PubMed  Google Scholar 

  11. Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, Love B, Shriver CD (2009) A gene expression signature that defines breast cancer metastases. Clin Exptl Metastasis 26:205–213

    CAS  Google Scholar 

  12. Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 4:650–661

    CAS  PubMed  Google Scholar 

  13. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nature Med 19:1450–1464

    CAS  PubMed  Google Scholar 

  14. Pantel K, Alix-Panabieres C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388

    CAS  PubMed  Google Scholar 

  15. Seeberg LT, Waage A, Brunborg C, Hugenschmidt H, Renolen A, Stav I, Bjornbeth BA, Brudvik KW, Borgen EF, Naume B, and Wiedswang G (2014) Circulating Tumor Cells in Patients With Colorectal Liver Metastasis Predict Impaired Survival. Ann. Surg.

  16. Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY (2013) Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 32:179–188

    PubMed Central  PubMed  Google Scholar 

  17. Bohl CR, Harihar S, Denning WL, Sharma R, Welch DR (2013) Metastasis suppressors in breast cancers: mechanistic insights and clinical potential. J Mol Med 92:13–30

    PubMed  Google Scholar 

  18. Hurst DR, Welch DR (2011) Metastasis suppressor genes: at the interface between the environment and tumor cell growth. Intl Rev Cell Molec Biol 286:107–180

    CAS  Google Scholar 

  19. Seraj MJ, Samant RS, Verderame MF, Welch DR (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769

    CAS  PubMed  Google Scholar 

  20. Hurst DR, Welch DR (2011) Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett 585:3185–3190

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Slipicevic A, Holm R, Emilsen E, Ree Rosnes AK, Welch DR, Maelandsmo GM, Florenes VA (2012) Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer 12:73

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Spinola-Amilibia M, Rivera J, Ortiz-Lombardia M, Romero A, Neira JL, Bravo J (2011) The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils. J Mol Biol 411:1114–1127

    CAS  PubMed  Google Scholar 

  23. Frolova N, Edmonds MD, Bodenstine TM, Seitz R, Johnson MR, Feng R, Welch DR, Frost AR (2009) A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumor Biol 30:148–159

    CAS  Google Scholar 

  24. Hurst DR, Xie Y, Thomas JW, Liu J, Edmonds MD, Stewart MD, Welch DR (2013) The C-terminal putative nuclear localization sequence of BReast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 8:e55966

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, and Welch DR (2013) Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol. Carcinog. doi:10.1002/mc.22068

  26. Liu Y, Mayo MW, Nagji AS, Hall EH, Shock LS, Xiao A, Stelow EB, Jones DR (2013) BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Res 73:1308–1317

    CAS  PubMed Central  PubMed  Google Scholar 

  27. DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC, Xie Y, Welch DR (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717

    CAS  PubMed  Google Scholar 

  28. Vaidya KS, Harihar S, Stafford LJ, Hurst DR, Hicks DG, Casey G, DeWald DB, Welch DR (2008) Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283:28354–28360

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R, Ogretmen B (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4:761–775

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Seraj MJ, Samant RS, Verderame MF et al (1999) Identification of breast-cancer metastasis-suppressor candidate genes from metastasis-suppressed chromosome 11/MDA-MB-435 hybrids. Proc Natl Acad Sci 40:689

    Google Scholar 

  31. Zhang S, Lin QD, Di W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531

    PubMed  Google Scholar 

  32. Yang J, Zhang B, Lin Y, Yang Y, Liu X, Lu F (2008) Breast cancer metastasis suppressor 1 inhibits SDF-1alpha-induced migration of non-small cell lung cancer by decreasing CXCR4 expression. Cancer Lett 269:46–56

    CAS  PubMed  Google Scholar 

  33. Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172:809–817

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exptl Metastasis 25:753–763

    CAS  Google Scholar 

  35. Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES (2013) BRSM1 promoter methylation provides prognostic information in primary breast tumors. Mol Cancer Res 11:1248–1257

    CAS  PubMed  Google Scholar 

  36. Balgkouranidou I, Chimonidou M, Milaki G, Tsarouxa EG, Kakolyris S, Welch DR, Georgoulias V, Lianidou ES (2014) Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br J Cancer 110:2054–2062

    CAS  PubMed  Google Scholar 

  37. Jothy S (2003) CD44 and its partners in metastasis. Clin Exptl Metastasis 20:195–201

    CAS  Google Scholar 

  38. Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66:149–156

    CAS  PubMed  Google Scholar 

  39. Sneath RJS, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. J Clin Path Mol Path 51:191–200

    CAS  Google Scholar 

  40. Hiraga T, Ito S, Nakamura H (2013) Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 73:4112–4122

    CAS  PubMed  Google Scholar 

  41. Lopez JI, Camenisch TD, Stevens MV, Sands BJ, McDonald J, Schroeder JA (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763

    CAS  PubMed  Google Scholar 

  42. Gvozdenovic A, Arlt MJ, Campanile C, Brennecke P, Husmann K, Li Y, Born W, Muff R, Fuchs B (2013) CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Miner Res 28:838–847

    CAS  PubMed  Google Scholar 

  43. Gao X, Pang J, Li LY, Liu WP, Di JM, Sun QP, Fang YQ, Liu XP, Pu XY, He D, Li MT, Su ZL, Li BY (2010) Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasis-suppressor in prostate cancer. Oncogene 29:4555–4566

    CAS  PubMed  Google Scholar 

  44. Yamashita N, Goshima Y (2012) Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 45:234–246

    CAS  PubMed  Google Scholar 

  45. Hou ST, Jiang SX, Smith RA (2008) Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 267:125–181

    CAS  PubMed  Google Scholar 

  46. Shih JY, Lee YCG, Yang SC, Hong TM, Huang CYF, Yang PC (2003) Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exptl Metastasis 20:69–76

    CAS  Google Scholar 

  47. Ong Tone S, Dayanandan B, Fournier AE, Mandato CA (2010) GSK3 regulates mitotic chromosomal alignment through CRMP4. PLoS One 5:e14345

    PubMed Central  PubMed  Google Scholar 

  48. Krimpenfort P, Song JY, Proost N, Zevenhoven J, Jonkers J, Berns A (2012) Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours. Nature 482:538–541

    CAS  PubMed  Google Scholar 

  49. Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, Bachelot T, Bernet A, Mehlen P (2008) Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci 105:4850–4855

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Manhire-Heath R, Golenkina S, Saint R, Murray MJ (2013) Netrin-dependent downregulation of Frazzled/DCC is required for the dissociation of the peripodial epithelium in Drosophila. Nat Commun 4:2790

    PubMed  Google Scholar 

  51. Li PL, Liu MM, Ni J (2003) Study on the expression of the gene deleted in colorectal carcinoma in ovarian carcinoma. Zhonghua Fu Chan Ke. Za Zhi 38:207–209

  52. Bamias AT, Bai MC, Agnantis NJ, Michael MC, Alamanos YP, Stefanaki SV, Razi ED, Skarlos DV, Kappas AM, Pavlidis NA (2003) Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma. Cancer Invest 21:333–340

    CAS  PubMed  Google Scholar 

  53. Tarafa G, Villanueva A, Farré L, Rodriguez J, Masulen E, Reyes G, Seminago R, Olmedo E, Paules AB, Peinado MA, Bachs O, Capellá G (2000) DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 19:546–555

    CAS  PubMed  Google Scholar 

  54. Delloye-Bourgeois C, Fitamant J, Paradisi A, Cappellen D, Douc-Rasy S, Raquin MA, Stupack D, Nakagawara A, Rousseau R, Combaret V, Puisieux A, Valteau-Couanet D, Benard J, Bernet A, Mehlen P (2009) Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med 206:833–847

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM, Han HJ (2013) Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin alpha6beta4-dependent Akt, GSK-3beta, and HSF-1 in mesenchymal stem cells. Cell Death Dis 4:e563

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Goodison S, Yuan G, Sloan D, Kim R, Li C, Popescu NC, Urquidi V (2005) The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65:6042–6053

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Xue YZ, Wu TL, Wu YM, Sheng YY, Wei ZQ, Lu YF, Yu LH, Li JP, Li ZS (2013) DLC-1 is a candidate biomarker methylated and down-regulated in pancreatic ductal adenocarcinoma. Tumour Biol 34:2857–2861

    CAS  PubMed  Google Scholar 

  58. Guan CN, Zhang PW, Lou HQ, Liao XH, Chen BY (2012) DLC-1 expression levels in breast cancer assessed by qRT- PCR are negatively associated with malignancy. Asian Pac J Cancer Prev 13:1231–1233

    PubMed  Google Scholar 

  59. Chen WT, Yang CH, Wu CC, Huang YC, Chai CY (2013) Aberrant deleted in liver cancer-1 expression is associated with tumor metastasis and poor prognosis in urothelial carcinoma. APMIS 121:1131–1138

    CAS  PubMed  Google Scholar 

  60. Kim T, Vigil D, Der C, Juliano R (2009) Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev 28:77–83

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fujita H, Okada F, Hamada J, Hosokawa M, Moriuchi T, Koya RC, Kuzumaki N (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer 93:773–780

    CAS  PubMed  Google Scholar 

  62. Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, Chen J, Meng Q, Irving AT, Wang D, Williams ED, Liu JP, Sadler AJ, Williams BR, Shen L, Xu D (2013) ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 73:3625–3637

    CAS  PubMed  Google Scholar 

  63. Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS (2013) Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 73:5949–5962

    CAS  PubMed  Google Scholar 

  64. Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, Naceur-Lombarelli C, Zvelebil M, Isacke CM, Lord CJ, Ashworth A, Hnatyszyn HJ, Pegram M, Lippman M (2012) Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat 135:79–91

    CAS  PubMed  Google Scholar 

  65. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Med 18:1511–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci 109:E2441–E2450

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wang Y, Zhang H, Chen YP, Sun YM, Yang F, Yu WH, Liang J, Sun LY, Yang XH, Shi L, Li RF, Li YY, Zhang Y, Li Q, Yi X, Shang YF (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672

    CAS  PubMed  Google Scholar 

  68. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29:1803–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ding J, Zhang ZM, Xia Y, Liao GQ, Pan Y, Liu S, Zhang Y, Yan ZS (2013) LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer 109:994–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Yu Y, Wang B, Zhang K, Lei Z, Guo Y, Xiao H, Wang J, Fan L, Lan C, Wei Y, Ma Q, Lin L, Mao C, Yang X, Chen X, Li Y, Bai Y, Chen D (2013) High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochem Biophys Res Commun 437:192–198

    CAS  PubMed  Google Scholar 

  71. Meng F, Sun G, Zhong M, Yu Y, Brewer MA (2013) Inhibition of DNA methyltransferases, histone deacetylases and lysine-specific demethylase-1 suppresses the tumorigenicity of the ovarian cancer ascites cell line SKOV3. Int J Oncol 43:495–502

    CAS  PubMed  Google Scholar 

  72. Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2013) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2012) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470

    PubMed Central  PubMed  Google Scholar 

  74. Iwakuma T, Tochigi Y, VanPelt CS, Caldwell LC, Terzian T, Parant JM, Chau GP, Koch JG, Eischen CM, Lozano G (2008) Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene 27:1813–1820

    CAS  PubMed  Google Scholar 

  75. Singh LS, Berk M, Oates R, Zhao ZW, Tan HY, Jiang Y, Zhou A, Kirmani K, Steinmetz R, Lindner D, Xu Y (2007) Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 99:1313–1327

    CAS  PubMed  Google Scholar 

  76. Seuwen K, Ludwig MG, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610

    CAS  PubMed  Google Scholar 

  77. Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci 102:1632–1637

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y (2009) Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One 4:e5705

    PubMed Central  PubMed  Google Scholar 

  79. Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44:1937–1941

    CAS  PubMed  Google Scholar 

  80. Lynch CC (2011) Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48:44–53

    CAS  PubMed  Google Scholar 

  81. Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69:4097–4100

    CAS  PubMed  Google Scholar 

  82. D’Ambrosio J, Fatatis A (2009) Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exptl Metastasis 26:955–964

    Google Scholar 

  83. Ma XR, Kundu N, Ioffe OB, Goloubeva O, Konger R, Baquet C, Gimotty P, Reader J, Fulton AM (2010) Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Mol Cancer Res 8:1310–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    CAS  PubMed  Google Scholar 

  85. Fulton AM (1987) Interaction of natural effector cells and prostaglandins in the control of metastasis. J Natl Cancer Inst 78:735–741

    CAS  PubMed  Google Scholar 

  86. Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, Keller ET (2003) Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 95:878–889

    CAS  PubMed  Google Scholar 

  87. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28:347–358

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Zeng LC, Imamoto A, Rosner MR (2008) Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets 12:1275–1287

    CAS  PubMed  Google Scholar 

  89. Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR (2005) Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 280:24931–24940

    CAS  PubMed  Google Scholar 

  90. Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278:13061–13068

    CAS  PubMed  Google Scholar 

  91. Das SK, Bhutia SK, Sokhi UK, Azab B, Su ZZ, Boukerche H, Anwar T, Moen EL, Chatterjee D, Pellecchia M, Sarkar D, Fisher PB (2012) Raf kinase Inhibitor RKIP Inhibits MDA-9/Syntenin-mediated metastasis in melanoma. Cancer Res 72:6217–6226

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Huang L, Dai T, Lin X, Zhao X, Chen X, Wang C, Li X, Shen H, Wang X (2012) MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun 425:127–133

    CAS  PubMed  Google Scholar 

  93. Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK, and Rosner MR (2013) RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. doi:10.1038/onc.2013.328

  94. Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC (2004) RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 279:17515–17523

    CAS  PubMed  Google Scholar 

  95. Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC (2008) Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 27:2243–2248

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, Daignault S, Al-Mulla F, Keller E, Bonavida B, de la Serna I, Yeung KC (2012) Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 72:3091–3104

    CAS  PubMed  Google Scholar 

  97. Gelman IH (2012) Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 31:493–500

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Su B, Bu Y, Engelberg D, Gelman IH (2010) SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C- Raf/MEK/ERK pathway. J Biol Chem 285:4578–4586

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Gelman IH, Gao LQ (2006) SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways. Mol Cancer Res 4:151–158

    CAS  PubMed  Google Scholar 

  100. Su B, Zheng Q, Vaughan MM, Bu Y, Gelman IH (2006) SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with vascular endothelial growth factor inhibition. Cancer Res 66:5599–5607

    CAS  PubMed  Google Scholar 

  101. Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nature Med 9:900–906

    CAS  PubMed  Google Scholar 

  102. Akakura S, Gelman IH (2012) Pivotal role of AKAP12 in the regulation of cellular adhesion dynamics: control of cytoskeletal architecture, cell migration, and mitogenic signaling. J Signal Transduct 2012:529179

    PubMed Central  PubMed  Google Scholar 

  103. Parker BS, Ciocca DR, Bidwell BN, Gago FE, Fanelli MA, George J, Slavin JL, Moller A, Steel R, Pouliot N, Eckhardt B, Henderson MA, Anderson RL (2008) Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J Pathol 214:337–346

    CAS  PubMed  Google Scholar 

  104. Li W, Ding F, Zhang L, Liu Z, Wu Y, Luo A, Wu M, Wang M, Zhan Q, Liu Z (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 11:8753–8762

    CAS  PubMed  Google Scholar 

  105. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev Cancer 6:764–775

    CAS  Google Scholar 

  106. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383

    CAS  PubMed  Google Scholar 

  107. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278

    CAS  PubMed  Google Scholar 

  108. Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, Frierson HF, Conaway MR, Theodorescu D (2002) RhoGD12 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423

    CAS  PubMed  Google Scholar 

  109. Wu YM, Moissogiu K, Wang H, Wang XJ, Frierson HF, Schwartz MA, Theodorescu D (2009) Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci 106:5807–5812

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D (2013) Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 123:751–766

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Said N, Theodorescu D (2012) RhoGDI2 suppresses bladder cancer metastasis via reduction of inflammation in the tumor microenvironment. Oncoimmunology 1:1175–1177

    PubMed Central  PubMed  Google Scholar 

  112. Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D (2012) RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 122:1503–1518

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Harding MA, Theodorescu D (2010) RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 46:1252–1259

    CAS  PubMed  Google Scholar 

  114. Titus B, Frierson HF, Conaway M, Ching K, Guise T, Chirgwin J, Hampton G, Theodorescu D (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGD12. Cancer Res 65:7320–7327

    CAS  PubMed  Google Scholar 

  115. Gautam A, Li ZR, Bepler G (2003) RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 22:2135–2142

    CAS  PubMed  Google Scholar 

  116. Bepler G, O’Briant KC, Kim YC, Schreiber G, Pitterle DM (1999) A 1.4-Mb high-resolution physical map and contig of chromosome segment 11p15.5 and genes in the LOH11A metastasis suppressor region. Genomics 55:164–175

    CAS  PubMed  Google Scholar 

  117. Gautam A, Bepler G (2006) Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 66:6497–6502

    CAS  PubMed  Google Scholar 

  118. Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, Cress WD, Kim YC, Rosell R, McBride C, Robinson L, Sommers E, Haura E (2005) Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47:183–192

    PubMed  Google Scholar 

  119. Shu HB, Halpin DR, Goeddel DV (1997) Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6:751–763

    CAS  PubMed  Google Scholar 

  120. Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA (2002) Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38:83–91

    CAS  PubMed  Google Scholar 

  121. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Cheresh DA, Stupack DG (2002) Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nature Med 8:193–194

    CAS  PubMed  Google Scholar 

  124. Lahti JM, Teitz T, Stupack DG (2006) Does integrin-mediated cell death confer tissue tropism in metastasis? Cancer Res 66:5981–5984

    CAS  PubMed  Google Scholar 

  125. Stupack DG, Cho SY, Klemke RL (2000) Molecular signaling mechanisms of cell migration and invasion. Immunol Res 21:83–88

    CAS  PubMed  Google Scholar 

  126. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ, Lahti JM, Cheresh DA (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439:95–99

    CAS  PubMed  Google Scholar 

  128. Del Sal G, Ruaro ME, Philipson L, Schneider C (1992) The growth arrest-specific gene, gas1, is involved in growth suppression. Cell 70:595–607

    PubMed  Google Scholar 

  129. Stebel M, Vatta P, Ruaro ME, Del SG, Parton RG, Schneider C (2000) The growth suppressing gas1 product is a GPI-linked protein. FEBS Lett 481:152–158

    CAS  PubMed  Google Scholar 

  130. Gobeil S, Zhu XC, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Mellstrom B, Cena V, Lamas M, Perales C, Gonzalez C, Naranjo JR (2002) Gas1 is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci 19:417–429

    PubMed  Google Scholar 

  132. Lee CS, Buttitta L, Fan CM (2001) Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci 98:11347–11352

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886

    CAS  PubMed  Google Scholar 

  134. Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    CAS  PubMed  Google Scholar 

  135. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem (Tokyo) 149:15–25

    CAS  Google Scholar 

  137. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642

    CAS  PubMed  Google Scholar 

  139. Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73:473–477

    CAS  PubMed  Google Scholar 

  140. Dykxhoorn DM (2010) MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 70:6401–6406

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326

    CAS  PubMed  Google Scholar 

  142. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, Van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136

    CAS  PubMed  Google Scholar 

  144. Crea F, Clermont PL, Parolia A, Wang Y, and Helgason CD (2013) The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis. Rev. doi:10.1007/s10555-013-9455-3

  145. Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46:1283–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737

    CAS  PubMed  Google Scholar 

  147. Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617

    CAS  PubMed  Google Scholar 

  149. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le PE, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636

    CAS  PubMed  Google Scholar 

  150. Becker JA, Mirjolet JF, Bernard J, Burgeon E, Simons MJ, Vassart G, Parmentier M, Libert F (2005) Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other Gq-coupled receptors. Biochem Biophys Res Commun 326:677–686

    CAS  PubMed  Google Scholar 

  151. Navarro VM, Tena-Sempere M (2012) Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 8:40–53

    CAS  Google Scholar 

  152. Liu W, Beck BH, Vaidya KS, Nash KT, Feeley KP, Ballinger SW, Pounds KM, Denning WL, Diers AR, Landar A, Dhar A, Iwakuma T, and Welch DR (2013) Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res

  153. Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z, Richardson DR (2013) Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 34:1943–1954

    CAS  PubMed  Google Scholar 

  154. Liu W, Xing F, Iiizumi-Gairani M, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Kobayashi A, Mo YY, Fukuda K, Li Y, Watabe K (2012) N-myc downstream regulated gene 1 modulates Wnt-beta-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol Med 4:93–108

    PubMed Central  PubMed  Google Scholar 

  155. Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554

    CAS  PubMed  Google Scholar 

  156. Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308

    CAS  PubMed  Google Scholar 

  157. Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J (2009) Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 329:167–173

    CAS  PubMed  Google Scholar 

  158. Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 384:351–362

    CAS  PubMed  Google Scholar 

  159. Taylor JL, Szmulewitz RZ, Lotan T, Hickson J, Griend DV, Yamada SD, Macleod K, Rinker-Schaeffer CW (2008) New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett 272:12–22

    CAS  PubMed  Google Scholar 

  160. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res 63:1684–1695

    CAS  PubMed  Google Scholar 

  161. Krishnan V, Stadick N, Clark R, Bainer R, Veneris JT, Khan S, Drew A, Rinker-Schaeffer C (2012) Using MKK4’s metastasis suppressor function to identify and dissect cancer cell-microenvironment interactions during metastatic colonization. Cancer Metastasis Rev 31:605–613

    CAS  PubMed  Google Scholar 

  162. Huang MJ, Wang PN, Huang J, Zhang XW, Wang L, Liu HL, Wang JP (2013) [Expression and clinicopathological significance of serine-257/threonine-261 phosphorylated MKK4 in colorectal carcinoma]. Zhonghua Yi. Xue. Za Zhi 93:746–750

    CAS  Google Scholar 

  163. Murakami Y, Nobukuni T, Tamura K, Maruyama T, Sekiya T, Arai Y, Gomyou H, Tanigami A, Ohki M, Cabin D, Frischmeyer P, Hunt P, Reeves RH (1998) Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q. Proc Natl Acad Sci U S A 95:8153–8158

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27:427–430

    CAS  PubMed  Google Scholar 

  165. Faraji F, Pang Y, Walker RC, Nieves BR, Yang L, Hunter KW (2012) Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 8:e1002926

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Fukami T, Fukuhara H, Kuramochi M, Maruyama T, Isogai K, Sakamoto M, Takamoto S, Murakami Y (2003) Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer 107:53–59

    CAS  PubMed  Google Scholar 

  167. Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T, Maruyama T, Isogai K, Sekiya T, Shuin T, Kitamura T, Reeves RH, Murakami Y (2002) Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 93:605–609

    CAS  PubMed  Google Scholar 

  168. Allinen M, Peri L, Kujala S, Lahti-Domenici J, Outila K, Karppinen SM, Launonen V, Winqvist R (2002) Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer 34:384–389

    CAS  PubMed  Google Scholar 

  169. Deuschle U, Schuler J, Schulz A, Schluter T, Kinzel O, Abel U, Kremoser C (2012) FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS One 7:e43044

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E (2006) Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res 47:724–733

    CAS  PubMed  Google Scholar 

  171. Zhang Y, Edwards PA (2008) FXR signaling in metabolic disease. FEBS Lett 582:10–18

    CAS  PubMed  Google Scholar 

  172. Yang S, Lee KT, Lee JY, Lee JK, Lee KH, Rhee JC (2013) Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells. Tumour Biol 34:2731–2739

    CAS  PubMed  Google Scholar 

  173. Guan B, Li H, Yang Z, Hoque A, Xu X (2013) Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119:1321–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:1234850

    PubMed  Google Scholar 

  175. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate direct financial support from: U.S. National Cancer Institute RO1-CA134981 (DRW), Susan G. Komen for the Cure SAC11037 (DRW), National Foundation for Cancer Research-Center for Metastasis Research (DRW) and partial support from the Kansas Bioscience Authority (DRW), RO1-CA87728 (DRW) and P30-CA168524 (DRW). DRW is the Hall Family Professor of Molecular Medicine and is a Kansas Bioscience Authority Eminent Scholar. We apologize to authors whose work is not cited due to length limitations.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Vivian, C.J., Brinker, A.E. et al. Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell’s Journey. Cancer Microenvironment 7, 117–131 (2014). https://doi.org/10.1007/s12307-014-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-014-0148-4

Keywords

Navigation