Skip to main content

Advertisement

Log in

Toward an Integrative Analysis of the Tumor Microenvironment in Ovarian Epithelial Carcinoma

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Ovarian epithelial carcinomas are heterogeneous malignancies exhibiting great diversity in histological phenotypes as well as genetic and epigenetic aberrations. A general early event in tumorigenesis is regional dissemination into the peritoneal cavity. Initial spread to the peritoneum is made possible by cooperative signaling between a wide array of molecules constituting the tissue microenvironment in the coelomic epithelium. Changes in the activity of key microenvironmental components not constitutively expressed in normal tissue, including several disclosed adhesion molecules, growth factors, proteases, and G-protein coupled receptors (GPCRs), coordinate the transition. Remodeling of the extracellular matrix (ECM) and subsequent cell surface interactions enable transformation by promoting chromosomal instability (CIN) and stimulating several common signal transduction cascades to prepare the tissue for harboring and facilitating growth, angiogenesis and metastasis of the developing tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jarboe E et al (2008) Serous carcinogenesis in the fallopian tube: a descriptive classification. Int J Gynecol Pathol 27:1–9

    PubMed  Google Scholar 

  2. Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ, IeM S (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486

    PubMed  CAS  Google Scholar 

  3. Anglesio MS, Arnold JM, George J et al (2008) Mutation of ERBB2 provides a novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low malignant potential tumors. Mol Cancer Res 6:1678–1690

    PubMed  CAS  Google Scholar 

  4. Ahmed AA, Etemadmoghadam D, Temple J et al (2010) Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 221:49–56

    PubMed  CAS  Google Scholar 

  5. Wong AST, Maines-Bandiera SD, Rosen B et al (1999) Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int J Cancer 81:180–188

    PubMed  CAS  Google Scholar 

  6. Davies BR, Worsley SD, Ponder BAJ (1998) Expression of E-cadherin, α-catenin, and β-catenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopathol 32:69–80

    CAS  Google Scholar 

  7. Auersperg N, Pan J, Grove BD (1999) E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci USA 96:6249–6254

    PubMed  CAS  Google Scholar 

  8. Naora H (2005) Developmental patterning in the wrong context: the paradox of epithelial ovarian cancers. Cell Cycle 4:1033–1035

    PubMed  CAS  Google Scholar 

  9. Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34:255–268

    PubMed  CAS  Google Scholar 

  10. Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748

    PubMed  CAS  Google Scholar 

  11. St Croix B, Sheehan C, Rak JW, Flørenes VA, Slingerland JM, Kerbel RS (1998) E-cadherin-dependent growth suppression is mediated by the cyclin-dependent inhibitor p27 Flørenes. J Cell Biol 142:557–571

    PubMed  CAS  Google Scholar 

  12. Levenberg S, Yarden A, Kam Z, Geiger B (1999) p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 18:869–876

    PubMed  CAS  Google Scholar 

  13. Ahmed N, Thompson EW, Quinn MA (2007) Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 213:581–588

    PubMed  CAS  Google Scholar 

  14. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, de Herreros AG (2000) The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat Cell Biol 2:84–89

    PubMed  CAS  Google Scholar 

  15. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788

    PubMed  CAS  Google Scholar 

  16. Pon YL, Zhou HY, Cheung ANY, Ngan HYS, Wong AST (2008) p70 S6 kinase promotes epithelial to mesenchymal transition through Snail induction in ovarian cancer cells. Cancer Res 68:6524–6532

    PubMed  CAS  Google Scholar 

  17. de Craene B, van Roy F, Berx G (2005) Unraveling signaling cascades for the Snail family of transcription factors. Cell Signal 17:535–547

    PubMed  Google Scholar 

  18. Park S-H, Cheung LWT, Wong AST, Leung PCK (2008) Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor α. Mol Endocrinol 22:2085–2098

    PubMed  CAS  Google Scholar 

  19. Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    PubMed  CAS  Google Scholar 

  20. Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6969–6988

    Google Scholar 

  21. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    PubMed  CAS  Google Scholar 

  22. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Dev 132:3151–3161

    CAS  Google Scholar 

  23. Hoschuetzky H, Aberle H, Kemlar R (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375–1380

    PubMed  CAS  Google Scholar 

  24. Symowicz J, Adley BP, Gleason KJ et al (2007) Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian cancer cells. Cancer Res 67:2030–2039

    PubMed  CAS  Google Scholar 

  25. Ween MP, Oehler MK, Ricciardelli C (2011) Role of versican, hyaluran and CD44 in ovarian cancer metastasis. Int J Mol Sci 12:1009–1029

    PubMed  CAS  Google Scholar 

  26. Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD (2003) Cadherin switching in ovarian cancer progression. Int J Cancer 106:172–177

    PubMed  CAS  Google Scholar 

  27. Paredes J, Albergaria A, Oliveira JT, Jerόnimo C, Milanezi F, Schmitt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869–5877

    PubMed  CAS  Google Scholar 

  28. Stefansson IM, Salvesen HB, Akslen LA (2004) Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol 22:1242–1252

    PubMed  CAS  Google Scholar 

  29. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131:791–805

    PubMed  CAS  Google Scholar 

  30. Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114:2553–2560

    PubMed  CAS  Google Scholar 

  31. Wegener KL, Campbell ID (2008) Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions. Mol Membr Biol 25:376–387

    PubMed  CAS  Google Scholar 

  32. Strobel T, Cannistra SA (1999) Beta 1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 73:362–367

    PubMed  CAS  Google Scholar 

  33. ElMasri WM, Casagrande G, Hoskins E, Kimm D, Kohn EC (2009) Cell adhesion in ovarian cancer. In: Stack MS, Fishman DA (eds) Ovarian cancer, 2nd edn. Springer, Chicago, pp 297–318

    Google Scholar 

  34. Davidson B, Goldberg I, Reich R et al (2003) Alpha V- and beta 1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol 90:248–257

    PubMed  CAS  Google Scholar 

  35. Burleson KM, Casey RC, Skubitz KM et al (2004) Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol 93:170–181

    PubMed  CAS  Google Scholar 

  36. Fishman DA, Kearns AM, Chilikuri K et al (1998) Metastatic dissemination of human ovarian epithelial carcinoma is promoted by α2β1 integrin-mediated interaction with type I collagen. Invasion Metastasis 18:15–26

    PubMed  CAS  Google Scholar 

  37. Casey RC, Burleson KM, Skubitz KM et al (2001) Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol 159:2071–2080

    PubMed  CAS  Google Scholar 

  38. Song G, Ming Y, Mao Y, Bao S, Ouyang G (2008) Osteopontin prevents curcumin-induced apoptosis and promotes survival through Akt activation via alpha v beta 3 integrins in human gastric cancer cells. Exp Biol Med 233:1537–1545

    CAS  Google Scholar 

  39. Fong YC, Liu SC, Huang CY et al (2009) Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer 64:263–270

    PubMed  Google Scholar 

  40. Samanna V, Wei H, Ego-Osuala D, Chellaiah MA (2006) Alpha-V-dependent outside-in signaling is required for the regulation of CD44 surface expression, MMP-2 secretion, and cell migration by osteopontin in human melanoma cells. Exp Cell Res 312:2214–2230

    PubMed  CAS  Google Scholar 

  41. Song G, Ouyang G, Mao Y, Ming Y, Bao S, Hu T (2009) Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1α up-regulation and MMP9 activation. J Cell Mol Med 13:1706–1718

    PubMed  Google Scholar 

  42. Wang F, Fishman DA (2009) LPA and invasion. In: Stack MS, Fishman DA (eds) Ovarian cancer, 2nd edn. Springer, Chicago, pp 269–296

    Google Scholar 

  43. Yagi H, Yotsumoto F, Miyamoto S (2008) Heparin-binding epidermal growth factor-like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial-mesenchymal transition. Mol Cancer Ther 7:3441–3451

    PubMed  CAS  Google Scholar 

  44. Dong Y, Tan OL, Loessner D et al (2010) Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res 70:2624–2633

    PubMed  CAS  Google Scholar 

  45. Yousef GM, Polymeris M-E, Yacoub GM et al (2003) Parallel overexpression of seven kallikrein genes in ovarian cancer. Cancer Res 63:2223–2227

    PubMed  CAS  Google Scholar 

  46. Sawada K, Mitra AK, Radjabi AR et al (2008) Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res 68:2329–2339

    PubMed  CAS  Google Scholar 

  47. Cheng KW, Lahad JP, Kuo WL et al (2004) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256

    PubMed  CAS  Google Scholar 

  48. Bouchard V, Harnois C, Demers MJ et al (2008) B1-integrin/Fak/Src signaling in intestinal epithelial crypt cell survival: integration of complex regulatory mechanisms. Apoptosis 13:531–542

    PubMed  CAS  Google Scholar 

  49. Yee KL, Weaver VM, Hammer DA (2008) Integrin-mediated signalling through the MAP-kinase pathway. IET Syst Biol 2:8–15

    PubMed  CAS  Google Scholar 

  50. Hodkinson PS, Elliott T, Wong WS, Rintoul RC, Mackinnon AC, Haslett C, Sethi T (2006) ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through β1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13:1776–1788

    PubMed  CAS  Google Scholar 

  51. Lane D, Robert V, Grondin R, Rancourt C, Piché A (2007) Malignant ascites protects against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int J Cancer 121:1227–1237

    PubMed  CAS  Google Scholar 

  52. Novak A, Hsu SC, Leung-Hagesteijn C et al (1998) Cell adhesion and the integrin-linked kinase regulate the LEF-1 and β-catenin signaling pathways. Proc Natl Acad Sci USA 95:4374–4379

    PubMed  CAS  Google Scholar 

  53. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95:11211–11216

    PubMed  CAS  Google Scholar 

  54. Barbarà MJ, Puig I, Dominguez D et al (2004) Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23:7345–7354

    Google Scholar 

  55. Ly DP, Corbett SA (2005) The integrin alpha5beta1 regulates alphavbeta3-mediated extracellular signal-regulated kinase activation. J Surg Res 123:200–205

    PubMed  CAS  Google Scholar 

  56. Chen HC, Appeddu PA, Isoda H, Guan JL (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271:26329–26334

    PubMed  CAS  Google Scholar 

  57. Sood AK, Armaiz-Pena GN, Halder J et al (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 120:1515–1523

    PubMed  CAS  Google Scholar 

  58. Gilmore AP, Metcalfe AD, Romer LH, Streuli CH (2000) Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 149:431–446

    PubMed  CAS  Google Scholar 

  59. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA (2003) Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162:933–943

    PubMed  CAS  Google Scholar 

  60. Wary KK, Mariotti A, Zurzolo C, Giancotti FG (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634

    PubMed  CAS  Google Scholar 

  61. Abraham S, Kogata N, Fassler R, Adams RH (2008) Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ Res 102:562–570

    PubMed  CAS  Google Scholar 

  62. Christie DR, Shaikh FM, Lucas JA IV, Lucas JA III, Bellis SL (2008) ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 1:3

    PubMed  Google Scholar 

  63. Obermair A, Schmid BC, Packer LM et al (2002) Expression of muc1 splice variants in benign and malignant ovarian tumours. Int J Cancer 100:166–171

    PubMed  CAS  Google Scholar 

  64. Yu LG, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell adhesion. J Biol Chem 282:773–781

    PubMed  CAS  Google Scholar 

  65. Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, Yu L-G (2009) Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69:6799–6806

    PubMed  CAS  Google Scholar 

  66. Laderach DJ, Compagno D, Toscano MA, Croci DO, Dergan-Dylon D, Salatino M, Rabinovich GA (2010) Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings. IUBMB Life 62:1–13

    PubMed  CAS  Google Scholar 

  67. Herrera CA, Xu L, Bucana CD et al (2002) Expression of metastasis-related genes in human epithelial ovarian tumors. Int J Oncol 20:5–13

    PubMed  CAS  Google Scholar 

  68. Curry TE, Osteen KG (2003) The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24:428–465

    PubMed  CAS  Google Scholar 

  69. Imai K, Khandoker M, Yonai M, Takahashi T, Sato T, Hasegawa Y, Hashizume K (2003) Matrix metalloproteinases-2 and -9 activities in bovine follicular fluid of different-sized follicles: relationship to intra-follicular inhibin and steroid concentrations. Domest Anim Endocrinol 24:171–183

    PubMed  CAS  Google Scholar 

  70. Fishman DA, Liu Y, Ellerbroek SM, Stack MS (2001) Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res 61:3194–3199

    PubMed  CAS  Google Scholar 

  71. Murphy G, Stanton H, Cowell S, Butler G, Knäuper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS 107:38–44

    PubMed  CAS  Google Scholar 

  72. Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S (2005) Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 280:10564–10571

    PubMed  CAS  Google Scholar 

  73. So J, Wang FQ, Navari J, Schreher J, Fishman DA (2005) LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R2). Gynecol Oncol 97:870–878

    PubMed  CAS  Google Scholar 

  74. Gonzalo P, Moreno V, Gálvez BG, Arroyo AG (2010) MT1-MMP and integrins: hand-to-hand in cell communication. Biofactors 36:248–254

    PubMed  CAS  Google Scholar 

  75. Agarwal R, D’Souza T, Morin PJ (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65:7378–7385

    PubMed  CAS  Google Scholar 

  76. Lee LY, Wu CM, Wang CC et al (2008) Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol Histopathol 23:515–521

    PubMed  Google Scholar 

  77. Cowden-Dadl KD, Symowicz J, Ning Y et al (2008) Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res 68:4606–4613

    Google Scholar 

  78. Park S-S, Kim JE, Kim YA, Kim YC, Kim S-W (2005) Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathol 47:625–630

    Google Scholar 

  79. Miyamoto S, Hirata M, Yamazaki A et al (2004) Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res 64:5720–5727

    PubMed  CAS  Google Scholar 

  80. Davies EJ, Blackhall FH, Shanks JH et al (2004) Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin Cancer Res 10:5178–5186

    PubMed  CAS  Google Scholar 

  81. Narita K, Staub J, Chien J et al (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66:6025–6032

    PubMed  CAS  Google Scholar 

  82. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells. Cancer Res 63:5224–5229

    PubMed  CAS  Google Scholar 

  83. Belotti D, Calcagno C, Garofalo A, Caronia D, Riccardi E, Giavazzi R, Taraboletti G (2008) Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Mol Cancer Res 6:525–534

    PubMed  CAS  Google Scholar 

  84. Park MJ, Kwak HJ, Lee HC et al (2007) Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem 282:30485–30496

    PubMed  CAS  Google Scholar 

  85. Saygili E, Schauerte P, Pekassa M et al (2011) Sympathetic neurons express and secrete MMP-2 and MT1-MMP to control nerve sprouting via pro-NGF conversion. Cell Mol Neurobiol 31:17–25

    PubMed  CAS  Google Scholar 

  86. Romon R, Adriaenssens E, Lagadec C, Germain E, Hondermarck H, Le Bourhis X (2010) Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol Cancer 9:157

    PubMed  Google Scholar 

  87. Salas C, Julio-Pieper M, Valladares M et al (2006) Nerve growth factor-dependent activation of trkA receptors in the human ovary results in synthesis of follicle-stimulating hormone receptors and estrogen secretion. J Clin Endocrinol Metab 91:2396–2403

    PubMed  CAS  Google Scholar 

  88. Tapia V, Gabler F, Muñoz M et al (2011) Tyrosine kinase A receptor (trkA): a potential marker in epithelial ovarian cancer. Gynecol Oncol 121:13–23

    PubMed  CAS  Google Scholar 

  89. Baron AT, Lafky JM, Suman VJ et al (2001) A preliminary study of serum concentrations of soluble epidermal growth factor receptor (sErbB1), gonadotropins, and steroid hormones in healthy men and women. Cancer Epidemiol Biomarkers Prev 10:1175–1185

    PubMed  CAS  Google Scholar 

  90. Baron AT, Boardman CH, Lafky JM et al (2005) Soluble epidermal growth factor receptor (sEGFR) and cancer antigen 125 (CA125) as screening and diagnostic tests for epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:306–318

    PubMed  CAS  Google Scholar 

  91. Sengupta S, Kim KS, Berk MP et al (2007) Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene 26:2894–2901

    PubMed  CAS  Google Scholar 

  92. Zhou RH, Pesant S, Cohn HI, Soltys S, Koch WJ, Eckhart AD (2009) Negative regulation of VEGF signaling in human coronary artery endothelial cells by G protein-coupled receptor kinase 5. Clin Transl Sci 2:57–61

    PubMed  Google Scholar 

  93. Feng Z, Li K, Liu M, Wen C (2010) NRAGE is a negative regulator of nerve growth factor-stimulated neurite outgrowth in PC12 cells mediated through TrkA-ERK signaling. J Neurosci Res 88:1822–1828

    PubMed  CAS  Google Scholar 

  94. Chu CS, Xue B, Tu C, Feng ZH, Shi YH, Miao Y, Wen CJ (2007) NRAGE suppresses metastasis of melanoma and pancreatic cancer in vitro and in vivo. Canc Lett 250:268–275

    CAS  Google Scholar 

  95. Tian XX, Rai D, Li J et al (2005) BRCA2 suppresses cell proliferation via stabilizing MAGE-D1. Cancer Res 65:4747–4753

    PubMed  CAS  Google Scholar 

  96. Pua TL, Wang FQ, Fishman DA (2009) Role of LPA in ovarian cancer development and progression. Future Oncol 5:1659–1673

    PubMed  CAS  Google Scholar 

  97. Kehlen A, Englert N, Seifert A et al (2004) Expression, regulation and function of autotaxin in thyroid carcinomas. Int J Cancer 109:833–838

    PubMed  CAS  Google Scholar 

  98. Ptaszynska MM, Pendrak ML, Bandle RW, Stracke ML, Roberts DD (2008) Positive feedback between vascular endothelial growth factor-A and autotaxin in ovarian cancer. Mol Cancer Res 6:352–363

    PubMed  CAS  Google Scholar 

  99. Ren J, Xiao YJ, Singh LS et al (2006) Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 66:3006–3014

    PubMed  CAS  Google Scholar 

  100. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591

    PubMed  CAS  Google Scholar 

  101. le Balle F, Simon MF, Meijer S, Fourcade O, Chap H (1999) Membrane sidedness of biosynthetic pathways involved in the production of lysophosphatidic acid. Adv Enzym Regul 39:275–284

    Google Scholar 

  102. Lόpez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    Google Scholar 

  103. Shi Q, Xiong Q, Le X, Xie K (2001) Regulation of interleukin-8 expression by tumor-associated stress factors. J Interferon Cytokine Res 21:553–566

    PubMed  CAS  Google Scholar 

  104. Ramachandran S, Shida D, Nagahashi M, Fang X, Milstien S, Takabe K, Spiegel S (2010) Lysophosphatidic acid stimulates gastric cancer cell proliferation via ERK1-dependent upregulation of sphingosine kinase 1 transcription. FEBS Lett 584:4077–4082

    PubMed  CAS  Google Scholar 

  105. Lee O-H, Kim Y-M, Lee YM et al (1999) Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Comm 264:743–750

    PubMed  CAS  Google Scholar 

  106. Hong G, Baudhuin LM, Xu Y (1999) Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett 460:513–518

    PubMed  CAS  Google Scholar 

  107. Lee J, Park SY, Lee EK et al (2006) Activation of hypoxia-inducible factor-1alpha is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res 12:6351–6358

    PubMed  CAS  Google Scholar 

  108. Song G, Cai QF, Mao YB, Ming YL, Bao SD, Ouyang GL (2008) Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3K/Akt pathway. Cancer Sci 99:1901–1907

    PubMed  CAS  Google Scholar 

  109. Dai J, Peng L, Fan K et al (2009) Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28:3412–3422

    PubMed  CAS  Google Scholar 

  110. Zhang R, Zhang Z, Pan X, Huang X, Huang Z, Zhang G (2011) ATX-LPA axis induces expression of OPN in hepatic cancer cell SMMC7721. Anat Rec 294:406–411

    CAS  Google Scholar 

  111. Bagnato A, Salani D, Di Castro V et al (1999) Expression of endothelin-1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 59:720–727

    PubMed  CAS  Google Scholar 

  112. Rosanὸ L, Spinella F, Di Castro V et al (2005) Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res 65:11649–11657

    Google Scholar 

  113. Sumitomo M, Shen R, Walburg M et al (2000) Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. J Clin Invest 106:1399–1407

    PubMed  CAS  Google Scholar 

  114. Spinella F, Rosanὸ L, Di Castro V, Nicotra MR, Natali PG, Bagnato A (2004) Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin A receptor in human ovarian carcinoma cells. Clin Cancer Res 10:4670–4679

    PubMed  CAS  Google Scholar 

  115. Bagnato A, Rosanὸ L (2008) The endothelin axis in cancer. Int J Biochem Cell Biol 40:1443–1451

    PubMed  CAS  Google Scholar 

  116. Spinella F, Rosanὸ L, Di Castro V, Nicotra MR, Natali PG, Bagnato A (2003) Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells. J Biol Chem 278:1294–1301

    Google Scholar 

  117. Braun AH, Coffey RJ (2005) Lysophosphatidic acid, a disintegrin and metalloprotease-17 and heparin-binding epidermal growth factor-like growth factor in ovarian cancer: the first word, not the last. Clin Cancer Res 11:4639–4643

    PubMed  CAS  Google Scholar 

  118. Rosanὸ L, Di Castro V, Spinella F et al (2006) ZD4054, a potent endothelin receptor A antagonist, inhibits ovarian carcinoma cell proliferation. Exp Biol Med 231:1132–1135

    Google Scholar 

  119. Prenzel N, Zwick E, Daub H et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  120. Tanaka Y, Miyamoto S, Suzuki SO et al (2005) Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 11:4783–4792

    PubMed  CAS  Google Scholar 

  121. Schäfer B, Gschwind A, Ullrich A (2004) Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23:991–999

    PubMed  Google Scholar 

  122. Ong A, Maines-Barnes SL, Roskelley CD, Auersperg N (2000) An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium. Int J Cancer 85:430–437

    PubMed  CAS  Google Scholar 

  123. Auersperg N, Wong AST, Choi K-C, Kang SK, Leung PCK (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    PubMed  CAS  Google Scholar 

  124. Pon YL, Auersperg N, Wong AST (2005) Gonadotropins regulate N-cadherin-mediated human epithelial cell survival at both post-translational and transcriptional levels through a cyclic AMP/protein kinase A pathway. J Biol Chem 280:15438–15448

    PubMed  CAS  Google Scholar 

  125. Soler AP, Knudsen KA, Tecson-Miguel A, McBrearty FX, Han AC, Salazar H (1997) Expression of E-cadherin and N-cadherin in surface epithelial-stromal tumors of the ovary distinguishes mucinous from serous and endometrioid tumors. Human Pathol 28:734–739

    Google Scholar 

  126. Tran NL, Adams DG, Vaillancourt RR, Heimark RL (2002) Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by hemophilic adhesion and actin cytoskeletal organization. J Biol Chem 277:32905–32914

    PubMed  CAS  Google Scholar 

  127. Kawakami M, Staub J, Cliby W, Hartmann L, Smith DI, Shridhar V (1999) Involvement of H-cadherin (CDH13) on 16q in the region of frequent deletion in ovarian cancer. Int J Oncol 15:715–720

    PubMed  CAS  Google Scholar 

  128. Zhong Y, Lopez-Barcons L, Haigentz M Jr, Ling YH, Perez-Soler R (2004) Exogenous expression of H-cadherin in CHO cells regulates contact inhibition of cell growth by inducing p21 expression. Int J Oncol 24:1573–1579

    PubMed  CAS  Google Scholar 

  129. Cheung LW, Mak AS, Cheung AN, Ngan HY, Leung PC, Wong AS (2011) P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin. Oncogene 30:2964–2974

    PubMed  CAS  Google Scholar 

  130. Takayama TK, McMullen BA, Nelson PS, Matsumura M, Fujikawa K (2001) Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 40:15341–15348

    PubMed  CAS  Google Scholar 

  131. Ohler A, Debela M, Wagner S, Magdolen V, Becker-Pauly C (2010) Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol Chem 391:455–460

    PubMed  CAS  Google Scholar 

  132. Scarisbrick IA, Epstein B, Cloud BA et al (2011) Functional role of kallikrein 6 in regulating immune cell survival. PLoS One 6:e18376

    PubMed  CAS  Google Scholar 

  133. White NM, Chow TF, Mejia-Guerrero S et al (2010) Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 102:1244–1253

    PubMed  CAS  Google Scholar 

  134. Sano A, Sangai T, Maeda H, Nakamura M, Hasebe T, Ochiai A (2007) Kallikrein 11 expressed in human breast cancer cells release insulin-like growth factor through degradation of IGFBP-3. Int J Oncol 30:1493–1498

    PubMed  CAS  Google Scholar 

  135. Emami N, Diamandis EP (2008) Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin. J Biol Chem 283:3031–3041

    PubMed  CAS  Google Scholar 

  136. Yoon H, Blaber SI, Debela M, Goettig P, Scarisbrick IA, Blaber M (2009) A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15. Biol Chem 390:373–377

    PubMed  CAS  Google Scholar 

Download references

Author disclosures

There are no financial disclosures or conflicts of interests regarding the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan N. Serio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serio, R.N. Toward an Integrative Analysis of the Tumor Microenvironment in Ovarian Epithelial Carcinoma. Cancer Microenvironment 5, 173–183 (2012). https://doi.org/10.1007/s12307-011-0092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0092-5

Keywords

Navigation