Skip to main content
Log in

Characterization of PP2A-A3 mRNA expression and growth patterns in Arabidopsis thaliana under drought stress and abscisic acid

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

MS medium:

Murashige and Skoog nutrient medium

PP2A:

Phosphoprotein phosphatase 2A

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

References

  • Almeida-de-Macedo MM, Ransom N, Feng Y, Hurst J, Wurtele ES (2013) Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data. BMC Bioinform 14:214

    Article  CAS  Google Scholar 

  • Biddington NL, Dearman AS (1982) The effect of abscisic acid on root and shoot growth of cauliflower plants. Plant Growth Regul 1:15–24

    Article  CAS  Google Scholar 

  • Biswas J, Chowdhury B, Bhattacharya A, Mandal AB (2002) In vitro screening for increased drought tolerance in rice. In Vitro Cell Dev Biol Plant 38:525–530

    Article  Google Scholar 

  • Blakeslee JJ, Zhou HW, Heath JT, Skottke KR, Barrios JA, Liu SY, De Long A (2008) Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots. Plant Physiol 146:539–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61(1):651–679

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLong A (2006) Switching the flip: protein phosphatase roles in signaling pathways. Curr Opin Plant Biol 9:470–477

    Article  PubMed  CAS  Google Scholar 

  • Deruère J, Jackson K, Garbers C, Söll D, DeLong A (1999) The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389–399

    Article  PubMed  Google Scholar 

  • Dubrovsky JG, Gómez-Lomelí LF (2003) Water deficit accelerates determinate developmental program of the primary root and does not affect lateral root initiation in a Sonoran Desert cactus (Pachycereuspringlei, Cactaceae). Am J Bot 90:823–831

    Article  PubMed  CAS  Google Scholar 

  • Farooqa M, Kobayashia N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167:1066–1075

    Article  CAS  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbers C, DeLong A, Deruère J, Bernasconi P, Söll D (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J 15:2115–2124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisler-Lee J, O’Toole N, Ammar R, Provart NJ, Millar AH, Geisler M (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gopal J, Iwama K, Jitsuyama Y (2008) Effect of water stress mediated through agar on in vitro growth of potato. In Vitro Cell Dev Biol Plant 44:221–228

    Article  Google Scholar 

  • Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M, Girke T (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147:41–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  • Kalefetoglu T, Ekmekci Y (2005) The effects of drought on plants and tolerance mechanisms. GUJ Sci 18:723–740

    Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2002) Disruption of a guard cell expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49(1):199–222

    Article  PubMed  CAS  Google Scholar 

  • Luan S (1998) Protein phosphatases and signaling cascades in higher plants. Acta Bot Sin 40:883–889

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • País SM, Téllez-Iñón MT, Capiati DA (2009) Serine/threonine protein phosphatases type 2A and their roles in stress signaling. Plant Signal Behav 4:1013–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernas M, García-Casado G, Rojo E, Solano R, Sánchez-Serrano JJ (2007) A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signaling. Plant J 51:763–778

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of Maize. Plant Physiol 114:519–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori IC, Murata Y (2008) Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol 49:1396–1401

    Article  PubMed  Google Scholar 

  • Schuppler U, He PH, John PC, Munns R (1998) Effect of water stress on cell division and cell division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol 117:667–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  PubMed  CAS  Google Scholar 

  • Shojaie B, Mostajeran A, Esmaeili A (2015) Different drought conditions could modulate growth responses of Arabidopsis thaliana through regulation of mRNA expression of genes encoding plasma membrane PIN proteins. Int J Adv Res Biol Sci 2:241–254

    CAS  Google Scholar 

  • Smith RD, Walker JC (1996) Plant protein phosphatases. Annu Rev Plant Physiol Plant Mol Biol 47:101–125

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77

    Article  PubMed  CAS  Google Scholar 

  • Terol J, Bargues M, Carrasco P, Pérez-Alonso M, Paricio N (2002) Molecular characterization and evolution of the protein phosphatase 2A B regulatory subunit family in plants. Plant Physiol 129:808–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uhrig RG, Labandera AM, Moorhead GB (2013) Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci 18:505–513

    Article  PubMed  CAS  Google Scholar 

  • Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651

    Article  PubMed  CAS  Google Scholar 

  • Vartanian N, Marcotte L, Giraudat J (1994) Drought rhizogenesis in Arabidopsis thaliana. Plant Physiol 104:761–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Xu C, Jing R, Mao X, Jia X, Chang X (2007) A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 99:439–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Gao G, Du J, Guo Y, Yang C (2010) Cell cycle modulation in response of the primary root of Arabidopsis to ABA. Pak J Bot 42:2703–2710

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

  • Zhang W, Li C, Qian C, Cao L (2009) Studies on the responses of root, shoot and drought resistance in the seedlings of forage Triticale to water stress. J Agr Sci 1:50–57

    CAS  Google Scholar 

  • Zhou HW, Nussbaumer C, Chao Y, DeLong A (2004) Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell 16:709–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zokaee-Khosroshahi M, Esna-Ashari M, Ershadi A, Imani A (2014) Morphological changes in response to drought stress in cultivated and wild Almond species. Int J Hortic Sci Technol 1:79–92

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roya Razavizadeh or Setsuko Komatsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavizadeh, R., Shojaie, B. & Komatsu, S. Characterization of PP2A-A3 mRNA expression and growth patterns in Arabidopsis thaliana under drought stress and abscisic acid. Physiol Mol Biol Plants 24, 563–575 (2018). https://doi.org/10.1007/s12298-018-0530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0530-7

Keywords

Navigation