Skip to main content
Log in

Antioxidant potential in Stevia rebaudiana callus in response to polyethylene glycol, paclobutrazol and gibberellin treatments

  • Short Communication
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The study on Stevia callus has the potential to advance the knowledge of antioxidant mechanisms involved in unorganized cells response to drought stress. The effects of polyethylene glycol (PEG; 0 and 4% w/v) in combination with paclobutrazol (PBZ; 0 and 2 mg l−1) and gibberellin (GA; 0 and 2 mg l−1) were studied on Stevia rebaudiana callus. PEG treatment led to an oxidative stress, as indicated by increased H2O2 content whose accumulation was prevented with PBZ and GA treatments. All treatments of PEG, PBZ and GA increased the total antioxidant capacity, with the highest antioxidant power in PBZ and GA treatments without PEG. The activity of superoxide dismutase, catalase and ascorbate peroxidase significantly increased in PEG treatment alone or in combination with PBZ and GA. All treatments of PEG, PBZ and GA significantly increased proteins, amino acids and proline contents, with the highest increase in presence of PBZ in medium culture. In contrary to proline, the activity of pyrroline-5-carboxylate synthetase and proline dehydrogenase did not change in response to any of the treatments. Collectively, our results demonstrated that PBZ and GA increased reactive oxygen species scavenging and osmolytes in PEG-treated calli more than PEG treatment alone to alleviate negative effects of PEG on Stevia calli. These findings will enable us to design effective genetic engineering strategies in callus culture to generate some somaclonal variation that may be useful in enhancing drought resistance in Stevia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

FRAP:

Ferric reducing antioxidant power

H2O2 :

Hydrogen peroxide

KO:

Kaurene oxidase

KS:

Kaurene synthase

MS:

Murashige and Skoog

P5CS:

Pyrroline-5-carboxylate synthetase

PDH:

Proline dehydrogenase

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

SVglys:

Steviol glycosides

SOD:

Superoxide dismutase

SV:

Steviol

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Anjum SA, Farooq M, Xie XY, Liu XJ, Ljaz MF (2012) Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci Hortic 140:66–73

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85(2):235–241

    Article  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandle J, Telmer P (2007) Steviol glycoside biosynthesis. Phytochemistry 68(14):1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya KV, Rasineni GK, Reddy AR (2009) Biochemical responses to drought stress in mulberry (Morus alba L.): evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. Acta Physiol Plant 31(3):437–443

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Geuns JMC (2003) Stevioside. Phytochemistry 64:913–921

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Sun D, Tan Z, Rong D, Li C (2006) Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet 112(7):1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Prakash J (2009) Studies on Indian green leafy vegetables for their antioxidant activity. Plant Food Hum Nutr 64(1):39–45

    Article  CAS  Google Scholar 

  • Gupta P, Sharma S, Saxena S (2015) Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176:863–874

    Article  CAS  PubMed  Google Scholar 

  • Hajihashemi S (2017) Physiological, biochemical, antioxidant and growth characterizations of gibberellin and paclobutrazol-treated sweet leaf (Stevia rebaudiana B.) herb. J Plant Biochem. https://doi.org/10.1007/s13562-017-0428-4

    Google Scholar 

  • Hajihashemi S, Ehsanpour AA (2013) Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana Bertoni under in vitro drought stress. Biologiae 68:414–420

    CAS  Google Scholar 

  • Hajihashemi S, Ehsanpour AA (2014) Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture. Appl Biochem Biotechnol 172(8):4038–4052

    Article  CAS  PubMed  Google Scholar 

  • Hajihashemi S, Geuns JM (2013) Free radical scavenging activity of steviol glycosides, steviol glucuronide, hydroxytyrosol, metformin, aspirin and leaf extract of Stevia rebaudiana. Free Radic Antioxid 3:S34–S41

    CAS  Google Scholar 

  • Hajihashemi S, Geuns J (2016) Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio 6(9):937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajihashemi S, Geuns JM, Ehsanpour AA (2013) Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiol Plant 35(6):2009–2014

    Article  CAS  Google Scholar 

  • Khalil SE, Hussein MM, Khalil AM (2014) Interaction effects of different soil moisture levels, arbuscular mycorrhizal fungi and three phosphate levels on: II-mineral ions, protein, aminoacids contents of garden cress (Lepidium sativum L.) plant. Int J Adv Res 2(12):263–278

    Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119(3):839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize seedlings at low water potential. Ann Bot 89(7):813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rena AB, Splittstoesser WE (1975) Proline dehydrogenase and pyrroline-5-carboxylate reductase from Pumpkin cotyledons. Phytochemistry 14(3):657–661

    Article  CAS  Google Scholar 

  • Stines AP, Naylor DJ, Høj PB, Van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120(3):923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson SM, Mahady GB, Beecher CW (1992) Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell Tissue Organ Cult 28(2):151–157

    Article  CAS  Google Scholar 

  • Szôllôsi R, Varga IS (2002) Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biol Szegediensis 46(3–4):125–127

    Google Scholar 

  • Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Anal 20:323–329

    Article  CAS  Google Scholar 

  • Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi A-T (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165(5):514–521

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Yemm E, Cocking E, Ricketts R (1955) The determination of amino-acids with ninhydrin. Analyst 80(948):209–214

    Article  CAS  Google Scholar 

Download references

Funding

No fund or grant was received for this project and corresponding author paid the experiments cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokoofeh Hajihashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajihashemi, S., Rajabpoor, S. & Djalovic, I. Antioxidant potential in Stevia rebaudiana callus in response to polyethylene glycol, paclobutrazol and gibberellin treatments. Physiol Mol Biol Plants 24, 335–341 (2018). https://doi.org/10.1007/s12298-017-0498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0498-8

Keywords

Navigation