Skip to main content
Log in

MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Agricultural productivity is severely hampered by drought in many parts of the globe. It is well-known that wild plant species can tolerate drought better when compared with their closely related cultivated plant species. Better drought adaptation of wild species over cultivated ones is accounted for their ability to differentially regulate gene expression. miRNAs, known to regulate gene expression at the post-transcriptional level, are admitted to play an important role in plant adaptation to stresses. This study aims at evaluating miRNA dynamics in a drought-tolerant wild Ipomoea campanulata L. and drought-sensitive cultivated Jacquemontia pentantha (Jacq.) of the family Convolvulaceae under ex situ drought. Sequencing profiles revealed that 34 conserved miRNA families were analogous between the two species. Drought altered expression levels of several of these miRNAs in both the species. Drought-tolerant I. campanulata showed upregulation of miR398, miR168, miR858, miR162 and miR408, while miR394 and miR171 were downregulated. Drought-sensitive J. pentantha showed upregulation of miR394, miR156, miR160, miR164, miR167, miR172, miR319, miR395, miR396, miR403 and downregulation of miR157. Basal miRNA levels and their drought mediated regulation were very different between the two species. Differential drought sensitivities of these two plant species can be attributed to these innate variations in miRNA levels and their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akashi K, Yoshimura K, Nanasato Y, Takahara K, Munekage Y, Yokota A (2008) A wild plant resources for studying molecular mechanisms of drought/strong light stress tolerance. Plant Biotechnol 25:257–263

    Article  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Bakhshi B, Fard EM, Nikpay N, Ebrahimi MA, Bihamta MR, Mardi M, Salekdeh GH (2016) MicroRNA signatures of drought signaling in rice root. PLoS ONE 11:e0156814

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballen-Taborda C, Plata G, Ayling S, Rodriguez-Zapata F, Lopez-Lavalle LAB, Duitama J, Tohme J (2013) Identification of cassava MicroRNAs under abiotic stress. Int J Genom 1:857–986

    Google Scholar 

  • Candar-Cakir B, Arican E, Zhang B (2016) Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnol J 14:1727–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catsky J (1960) Determination of water deficit in disks cut out from leaf blades. Biol Plant 2:76–78

    Article  CAS  Google Scholar 

  • Chen X, Xia J, Xia Z, Zhang H, Zeng C, Lu C, Zhang W, Wang W (2015) Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. BMC Plant Biol 15:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldem V, Akçay UC, Ozhuner E, Bakır Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE 7:e50298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T Jr, Nogueira RM, Endres L, Menossi M (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237:783–798

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci. doi:10.3389/fpls.2015.00058

    PubMed  PubMed Central  Google Scholar 

  • Ghorecha V, Krishnayya NSR, Sunkar R (2013) Impact of climate change on MicroRNA expression in plants. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley, Hoboken, pp 507–520

    Chapter  Google Scholar 

  • Ghorecha V, Patel K, Ingle S, Sunkar R, Krishnayya NSR (2014) Analysis of biochemical variations and microRNA expression in wild (Ipomoea campanulata) and cultivated (Jacquemontia pentantha) species exposed to in vivo water stress. Physiol Mol Biol Plants 20:57–67

    Article  CAS  PubMed  Google Scholar 

  • Guzman F, Almerao MP, Korbes AP, Loss-Morais G, Margis R (2012) Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS ONE 7:e49811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechol J 3:141–155

    Article  CAS  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns. doi:10.1016/j.gep.2016.01.001

    PubMed  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R (2012) Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genom 3:329

    Article  Google Scholar 

  • Jagtap S, Shivaprasad PV (2014) Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genom 15:1

    Article  Google Scholar 

  • Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci 8:1051–1060

    Google Scholar 

  • Kulcheski FR, Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GA, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genom 12:307

    Article  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130:581–585

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:1–12

    Article  Google Scholar 

  • Liu P, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Tian X, Li Y, Wu C, Zheng C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P (2013) High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genom 14:801

    Article  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Mayrose M, Kane NC, Mayrose I, Dlugosch KM, Rieseberg LH (2011) Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Mol Ecol 20:4683–4694

    Article  PubMed  Google Scholar 

  • Montes RAC, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:1–15

    Article  Google Scholar 

  • Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 280:1717–1730

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Kundu A, Pal A (2014) Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. J Integr Plant Biol 56:15–23

    Article  CAS  PubMed  Google Scholar 

  • Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, Desilva U, Zhang W, Sunkar R (2009) Cloning, characterization and expression analysis of porcine microRNAs. BMC Genom 10:1

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi J, Watanabe Y (2012) miR165/166 and the development of land plants. Dev Growth Differ 54:93–99

    Article  CAS  PubMed  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genom 14:233

    Article  CAS  Google Scholar 

  • Song JB, Huang SQ, Dalmay T, Yang ZM (2012) Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol 53:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Stoyanov Z (2005) Effects of water stress on leaf water relations of young bean plants. JCEA 6:5–14

    Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu Q, Fan L (2012) Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol 12:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang WH (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genom 12:1

    Article  Google Scholar 

  • Wang K, Li M, Gao F, Li S, Zhu Y, Yang P (2012) Identification of conserved and novel microRNAs from Liriodendron chinense floral tissues. PLoS ONE 7:e44696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X (2016) Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 17:1

    Article  Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Xue L, An L (2007) Functional diversity of miRNA in plants. Plant Sci 172:423–432

    Article  CAS  Google Scholar 

  • Yinpeng L, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31–46

    Article  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R (2011) Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 98:460–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VG and NSRK are thankful to UGC-DRS program for financial assistance. VG is grateful to RS for providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. R. Krishnayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorecha, V., Zheng, Y., Liu, L. et al. MicroRNA dynamics in a wild and cultivated species of Convolvulaceae exposed to drought stress. Physiol Mol Biol Plants 23, 291–300 (2017). https://doi.org/10.1007/s12298-017-0426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0426-y

Keywords

Navigation