Skip to main content
Log in

Comparative analysis of some biochemical parameters of argan pulp morphotypes (Argania spinosa (L) Skeels) during maturity and according to the continentality in Essaouira region (Morocco)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Argania spinosa (L.) Skeels is an endemic forest tree for Morocco. The phytochemical compounds evaluation of four different morphotypes of their fruit pulps was investigated. The total content of sugar, protein and phenolic compounds were monitored during three different stages of maturation in the semi-continental (Mejji) and littoral regions (R’zwa). Total sugars, proteins, phenolics increased up to the ripe stage of all argan fruit morphotypes in the two regions. Spherical shape had higher sugar and protein content than other morphotypes. A significant difference (p < 0.05), was demonstrated by Pearson’s test, between the different morphotypes at three stages studied for all the phytochemicals compounds. Likewise, ANOVA test established that the variation of this compounds was influenced by the stage of maturation and/or region of development and/or their interaction according to fruit shape. Results from this study revealed that the increase of these parameters level take place for the most part during the last stages of maturity which synchronize with fruit softening. Furthermore, our results showed information about the richness of argan fruit pulp in carbohydrates compounds and secondary metabolites as the possibility of their contribution in nutritive forage value especially at ripe stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abidi W, Jiménez S, Moreno MA, Gogorcena Y (2011) Evaluation of antioxidant compounds and total sugar content in a nectarine (Prunus persica (L.) Batsch) progeny. Int J Mol Sci 12:6919–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Goukh AA, Abu-Sarra AF (1993) Compositional changes during mango fruit ripening. Univ Khartoum J Agric Sci 1(1):33–51

    Google Scholar 

  • Alaoui A, Imoulan A, El Alaoui-Talibi Z, El Meziane A (2010) Genetic structure of mediterranean fruit fly (Ceratitis capitata) populations from Moroccan endemic forest of Argania spinosa. Int J Agric Biol 12:291–298

    CAS  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, Leon P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 42:133–231

    Google Scholar 

  • Ayaz FA, Demir O, Torun H, Kolcuoglu Y, Colak A (2008) Characterization of polyphenoloxidase (PPO) and total phenolic contents in medlar (Mespilus germanica L.) fruit during ripening and over ripening. Food Chem 106:291–298

    Article  CAS  Google Scholar 

  • Aydin N, Kadioglu A (2001) Changes in the chemical composition, polyphenol oxidase and peroxidase activities during development and ripening of medlar fruits (Mespilus germanica L.). Bulg J Plant Physiol 27(3–4):85–92

    CAS  Google Scholar 

  • Bani-Aameur F (2004) Morphological diversity of argan (Argania spinosa (L.) Skeels) populations in Morocco. For Genet 11:311–316

    Google Scholar 

  • Bani-Aameur F, Ferradous A, Dupuis P (1999) Typology of fruits and stones of Argania spinosa (sapotaceae). For Genet 6(4):213–219

    Google Scholar 

  • Barre A, Peumans WJ, Menu-Bouaouiche L, van Damme EJM, May GD et al (2000) Purification and structural analysis of an abundant thaumatin-like protein from ripe banana fruit. Planta 211:791–799

    Article  CAS  PubMed  Google Scholar 

  • Bashir HA, Abu-Goukh ABA (2003) Compositional changes during guava fruit ripening. Food Chem 80:557–563

    Article  CAS  Google Scholar 

  • Battino M (1929) Recherches sur l’huile et sur quelques autres produits de l’arganier. Librairie Française, Paris, p 132

    Google Scholar 

  • Benabid A (2000) Flore et écosystèmes du Maroc: évaluation et préservation de la biodiversité Edit. Ibis Press/Kalila Wa Dimna, Paris/Rabat, p 360

    Google Scholar 

  • Benabid A (2012) Milieu naturel et plantes du Maroc. Edit Fondation Al Saoud, Casablanca, p 433 (en arabe)

    Google Scholar 

  • Benchakroun F (1990) Un système typique d’Agroforesterie au Maroc: L’arganeraie. Séminaire Maghrébin D’Agroforesterie, Jebel Oust, Tunisie, October

  • Benzyane M, Khatouri M (1991) Estimation de la biomasse des peuplements d’Arganier (Argania spinosa L. Skeels) dans le plateau de Haha (Essaouira - Maroc). In: Annales de la recherche forestière au Maroc 25. Station de recherches forestière de Rabat, pp 128–140

  • Boudy P (1950) Economie forestière Nord Africaine. Tome II, Monographie et traitements des essences forestières, vol 1. Larose, Paris, pp 382–416

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brooks SJ, Moore JN, Murphy JB (1993) Quantitative and qualitative changes in sugar content of peach genotypes (Prunus persica (L.) Batsch). J Am Soc Hortic Sci 118:97–100

    CAS  Google Scholar 

  • Bureau S, Renard C, Reich M, Ginies C, Audergon JM (2009) Change in anthocyanin concentrations in red apricot fruits during ripening. LWT Food Sci Technol 42:372–377

    Article  CAS  Google Scholar 

  • Charrouf Z, Guillaume D (2005) Saponines et métabolites secondaires de l’arganier (Argania spinosa). Cah Agric 14(6):509–516

    Google Scholar 

  • Charrouf Z, Guillaume D (2009) Sustainable development in Northern Africa: the argan forest case. Sustainability 1:1012–1022

    Article  Google Scholar 

  • Charrouf Z, Hilali M, Jauregui O, Soufiaoui M, Guillaume D (2007) Separation and characterization of phenolic compounds in argan fruit pulp using liquid chromatography–negative electrospray ionization tandem mass spectroscopy. Food Chem 100:1398–1401

    Article  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC et al (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernane H, Hafidi M, El Hadrami I, Ajana H (2000) Evolution des paramètres biométriques et de la composition en acides gras de l’huile de quatre types de fruits d’Arganier (Argania spinosa L. Skeels) durant la maturation. Agrochimica 44:180–196

    CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chimi H, Cillard J, Cillard P (1994) Autooxydation de l’huile d’argan Argania spinosa L. du Maroc. Sci Aliments 14:117–124

    CAS  Google Scholar 

  • Choudhury SR, Roy S, Sengupta D (2009) Characterization of cultivar differences in b-1,3-glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars. Plant Cell Rep 28:1641–1653

    Article  Google Scholar 

  • Clemente E, Correia JM (2006) Peroxidase and polyphenoloxidase activities in uvaia fruit at different maturation stages. J Food Agric Environ 4(2):112–115

    CAS  Google Scholar 

  • Dejong TM (1999) Developmental and environmental control of dry-matter partitioning in peach. Hortic Sci 34:1037–1040

    Google Scholar 

  • Dragovic-Uzelac V, Levaj B, Mrkic V, Bursac D, Boras M (2007) The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem 102(3):966–975

    Article  CAS  Google Scholar 

  • Dubois MKA, Gilles YK, Hamilton PA et al (1956) Colemetrie method for determination of sugars and related substance. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El Arem A, Flamini G, Saafi EB, Issaoui M, Zayene N, Ferchichi A, Hammami M, Hela AN, Achour L (2011) Chemical and aroma volatile compositions of date palm (Phoenix dectylifera L.) fruits at three maturation stages. Food Chem 127:1744–1754

    Article  Google Scholar 

  • El Hassni M (2005) Interaction Palmier dattier-Fusarium oxysporum abledinis: elicitation des réactions de défense et développement de nouvelles stratégies pour le biocontröle de la maladie du bayoud. Thèse de Doctorat, Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Maroc, 187

  • El Monfalouti H, Charrouf Z, Belviso S, Ghirardello D, Scursatone B, Guillaume D, Denhez C, Zeppa G (2012) Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels). Eur J Lipid Sci Technol 114:446–452

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among population of argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Emberger L (1939) Aperçu général sur la végétation du Maroc: commentaire de la carte phytogéographique du Maroc 1:1.500.000. Veroff Geobot Inst Rübel Zurich 14:40–157

    Google Scholar 

  • Emberger L (1955) Une classification biogéographique des climats. Rec Trav des laboratoires de Botanique, Géologie et Zoologie Fac Sc Montpellier Série Bot, vol 7, pp 3–45

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London and New York, p 340

    Google Scholar 

  • Fellat-Zarrouck K, Smoughen S, Maurin R (1987) Etude de la pulpe du fruit de l’arganier (Argania spinosa) du Maroc. Matières grasse et latex. Actes Inst Agron Vet 7:17–22

    Google Scholar 

  • Fils-Lycaon BR, Wiersma PA, Eastwell KC, Sautiere P (1996) A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol 111:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel C, Klein I, Dilley DR (1968) Protein synthesis in relation to ripening of pome fruits. Plant Physiol 43:1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gońi O, Sanchez-Ballesta MT, Merodio C, Escribano MI (2009) Ripening related defense proteins in Annona fruit. Postharvest Biol Technol 55:169–173

    Google Scholar 

  • i Forcada CF, Gogorcena Y, Moreno MA (2013) Fruit sugar profile and antioxidants of peach and nectarine cultivars on almond × peach hybrid rootstocks. Sci Hortic 164:563–572

    Article  Google Scholar 

  • Kadioglu A, Yavru I (1998) Changes in the chemical content and polyphenol oxidase activity during development and ripening of cherry laurel. Phyton (Horn, Austria) 37:241–251

    CAS  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Kim YS, Park JY, Kim KS, Ko MK, Cheong SJ et al (2002) A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation. Plant Mol Biol 49:125–135

    Article  CAS  PubMed  Google Scholar 

  • Lancaster JE, Reay PF, Norris J, Butler RC (2000) Induction of flavonoids and phenolic acids in apple by UV-B and temperature. J Hortic Sci Biotechnol 75(2):142–148

    Article  CAS  Google Scholar 

  • Lee CY, Kagan V, Jaworski AW, Brown SK (1990) Enzymatic browning in relation to phenolic compounds and polypheoloxidase activity among various peach cultivars. J Agric Food Chem 38:99–191

    Article  CAS  Google Scholar 

  • Luis BR, Steäphane Q, Patrick P, Cherrouf Z (2005) Colorimetric evaluation of phenolic content and GC-MS characterization of phenolic composition of alimentary and cosmetic argan oil and press cake. J Agric Food Chem 53(23):9122–9127

    Article  Google Scholar 

  • M’hirit O (1989) L’arganier est une espèce fruitière forestière à usages multiples. Formation forestière continue, Thème «l’arganier» Station de Recherche Forestière, Rabat 13–17 Mars, 31–57

  • Maalah A (1992) Contribution à l’étude de la composition des huiles et des tourteaux des graines de quelques plantes marocaines. Thèse de 3ème cycle, Univ. Cadi Ayyad, Marrakech, Maroc, 141

  • Mainland CM, Tucker JW (2000) Blueberry health information-some new mostly review. Acta Hortic 574:39–43

    Google Scholar 

  • Majourhat K, Jabbar Y, Araneda L, Zeinalabidini M, Hafidi A, Martínez-Gómez P (2007) Karyotype characterization of Argania spinosa (L.) Skeels (Sapotaceae). S Afr J Bot 73:661–663

    Article  Google Scholar 

  • Metro A (1952) Observations préliminaires faites sur l’arganier à l’oued Cherrate et à Dar Askraoui en vue de séléctions généalogiques. Ann Rech For (Rabat, Rapport Annuel) 1952:201–215

    Google Scholar 

  • Morton JF, Voss GL (1987) The argan tree (argania sederoxylon, sapotaceae) a desert source of edible oil. Econ Bot 41(2):221–233

    Article  Google Scholar 

  • Peumans WJ, Barre A, Derycke V, Rougé P, Zhang W et al (2000) Purification, characterization and structural analysis of an abundant b-1,3-glucanase from banana fruit. Eur J Biochem 267:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, Fleming AJ (2001) Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. Plant J 25:663–674

    Article  CAS  PubMed  Google Scholar 

  • Pirie A, Mullins MG (1977) Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. Am J Enol Vitic 28:204–209

    CAS  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price J, Laxmi A, Martin SKS, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rop O, Sochor J, Jurikova T, Zitka O, Skutkova H, Salas P, Krska B, Babula P, Adam V, Kramarova D, Beklova M, Provaznik I, Kizek R, Mlcek J (2011) Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 16:74–91

    Article  CAS  Google Scholar 

  • Saltveit ME (2010) Synthesis and metabolism of phenolic compounds. In: De la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA (eds) Fruit and vegetable phytochemicals chemistry, nutritional value, and stability, chap 3. Wiley, p 93

  • Sandret FG (1957) La pulpe d’arganier, composition chimique et valeur fourragère. Variation au cours de la maturation. Ann Rech For Maroc (Rabat, Rapport Annuel) 4:152–177

    Google Scholar 

  • Sassa H, Hirano H (1998) Style-specific and developmentally regulated accumulation of a glycosylated thaumatin/PR5-like protein in Japanese pear (Pyrus serotina Rehd.). Planta 205:514–521

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Guillén F, Martínez-Romero D, Castillo S, Valero D (2005) Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J Agric Food Chem 53:2741–2745

    Article  CAS  PubMed  Google Scholar 

  • Swenson U, Anderberg A (2005) Phylogeny, character evolution and classification of Sapotaceae (Ericales). Cladistics 21:101–130

    Article  Google Scholar 

  • Taira T, Toma N, Ichi M, Takeuchi M, Ishihara M (2005) Tissue distribution, synthesis stage, and ethylene induction of pineapple (Ananas comosus) chitinases. Biosci Biotechnol Biochem 69:852–854

    Article  CAS  PubMed  Google Scholar 

  • Tlili N, Elguizani T, Nasri N, Khaldi A, Triki S (2011) Protein, lipid, aliphatic and triterpenic alcohols content of caper seeds “Capparis spinosa”. J Am Oil Chem Soc 88:265–270

    Article  CAS  Google Scholar 

  • Tlili N, Tir M, Benlajnef H, Khemiri S, Rejeb S, Khaldi A, Mejri H (2014) Ind Crops Prod 59:197–201

    Article  CAS  Google Scholar 

  • Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  PubMed  Google Scholar 

  • Vela JC, Marchart SS, Lucas IG, Martinez RB (2002) Evolution of phenolics and polyphenoloxidase isoenzymes in relation to physical–chemical parameters during loquat (Eriobotrya japonica cv. Algerie) fruit development and ripening. In: International symposium on loquat, pp 11–13

  • Youmbi E, Zemboudem NM, Tonfack LB (2010) Morphological and biochemical changes during development and maturation of Spondias cytherea Sonn. (Anacardiaceae) fruits. Fruits 65:285–292

    Article  CAS  Google Scholar 

  • Zouiten N (2002) Interaction Olivier-Psylle: Caractérisation et rôle des composés phénoliques dans l’attraction des cultivars d’olivier (Olea europea L.) Vis-à-vis de l’insecte (Euphyllura olivina Costa). Thèse, Univ Cadi Ayyad, 168

Download references

Acknowledgments

We are grateful to the authorities of CNRST/Morocco (URAC35) and CNERS/Morocco (National Centre for Saharan Studies and Research) for their support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawal Zhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhar, N., Naamani, K., Dihazi, A. et al. Comparative analysis of some biochemical parameters of argan pulp morphotypes (Argania spinosa (L) Skeels) during maturity and according to the continentality in Essaouira region (Morocco). Physiol Mol Biol Plants 22, 361–370 (2016). https://doi.org/10.1007/s12298-016-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0365-z

Keywords

Navigation