Skip to main content
Log in

Tissue specific response of Agrobacterium tumefaciens attachment to Sorghum bicolor (L) Moench

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Agrobacterium mediated genetic transformation of plants have advantages over other methods, especially for making single copy transgenic plants with reduced chances of gene silencing and instability. However, monocotyledonous plant species could not utilize the full potential of this system because of possible limitations in Agrobacterium interaction with monocot plant cells. Agrobacterium attachment as a factor in genetic transformation was studied in the leaf, shoot apex, and leaf derived callus of sorghum (Sorghum bicolor (L) Moench). Pre-induction of Agrobacterium with acetosyringone was found necessary for Agrobacterium attachment to sorghum tissues. All the explants responded positively, with preferential Agrobacterium attachment and colonization around the tissues having actively dividing cells. Callus proved to be the best explant for Agrobacterium attachment as observed in scanning electron microscopy and transient GUS expression. Loss of Agrobacterium attachment was observed with an increase in the degree of tissue differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

BAP:

Benzyl amino purine

ADS:

Adenine sulphate

References

  • Aldemita RR and Hodges TK (1996). Agrobacterium tumefaciens-mediated transformation of Japonica and Indica rice varieties. Planta 199: 612–617

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE and Oramas P (1998). An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:1–10

    Article  Google Scholar 

  • Arockiasamy S and Ignacimuthu S (2007). Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep. 26 1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Bradley LR, Kim JS and Matthysse AG (1997). Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J. Bacteriol. 179: 5372–5379

    Google Scholar 

  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA and Nester EW (1987). Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their role in plant interaction. J. Bacteriol. 169: 2086–2091

    PubMed  CAS  Google Scholar 

  • Douglas CJ, Halperin W and Nester EW (1982). Agrobacterium tumefaciens mutants affected in attachment to plant cell. J. Bacteriol. 152: 1265–1275

    PubMed  CAS  Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Sansonov DL, De la Riva GA and Selman-Housein G (1998). Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta206: 20–27

    Article  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D and Wang K (2002). Agrobacterium tumefaciens-mediated transformation of maize embryo using a standard binary vector system. Plant Physiol., 129: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Fromm M, Taylor L and Walbot V (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793

    Article  PubMed  CAS  Google Scholar 

  • Fullner KJ, Lara JC and Nester EW (1996). Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Ann. Rev. Plant. Physiol. Plant. Mol. Biol 51: 223–256

    Article  CAS  Google Scholar 

  • Gelvin SB (2003). Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol. Mol. Biol. Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Graves AE, Goldman SL, Banks SW and Graves ACF (1988). Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. J Bactriol 170:2395–2400

    CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996). High Efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA and Bevan MW (1987). GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Lee MH and Bostock RM (2006). Agrobacterium T-DNAmediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr. Genet 49:309–322

    Article  PubMed  CAS  Google Scholar 

  • Lima IG, Duarte RT, Furlaneto L, Baroni CH, Fungaro MH and Furlaneto MC (2006). Transformation of the entomopathogenic fungus Paecilomyces fumosoroseus with Agrobacterium tumefaciens. Lett. Appl. Microbiol 42:631–636

    PubMed  CAS  Google Scholar 

  • Lippincott JA and Lippincott BB (1978). Cell walls of crowngall tumors and embryogenic plant tissues lack Agrobacterium adherence sites. Science 199: 1075–1078

    Article  PubMed  Google Scholar 

  • Lorz H, Baker B and Schell J (1985). Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet 199:473–497

    Article  Google Scholar 

  • Matthysse AG, Homes KV and Gurlitz RHG (1981). Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J. Bacteriol 145: 583–595

    PubMed  CAS  Google Scholar 

  • Matthysse AG, Yarnall H, Boles SB and McMahan SA (2000). Region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biochim Biophys Acta 1490:208–212

    PubMed  CAS  Google Scholar 

  • Matzke MA, Aufsatz W, Kanno T, Mette MF and Matzke AJ (2002). Homology-dependent gene silencing and host defense in plants. Adv Genet 46: 235–275

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Sarma NP and Tyagi AK (1999). Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati1 and transmission of the transgene to R2 progeny. Plant Sci 147: 127–137

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15:473–797

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR and Hansen G (2000). The use of phosphomannose-isomerase as an selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Piers KL, Heath JD, Liang X, Stephens KM and Nester EW (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1991). Gene transfer to plants: Assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant. Mol. Biol 42:205–225

    Article  CAS  Google Scholar 

  • Sanford J (1988). The biolistic process. Trends Biotechnol 6:299–302

    Article  CAS  Google Scholar 

  • Shillito R, Saul M, Paszkowski J, Muller M and Potrykus I (1985). High-efficiency direct transfer to plants. Biotechnol 3:1099–1103

    Article  Google Scholar 

  • Smith RH and Hood EE (1995). Agrobacterium tumefaciens: transformation of monocotyledons. Crop Sci 35: 301–309

    Google Scholar 

  • Stenlid J (2006). Development of a rapid and simple Agrobacterium tumefaciens-mediated transformation system for the fungal pathogen Heterobasidion annosum. FEMS Microbiol. Lett 255:82–88

    Article  PubMed  Google Scholar 

  • Tzvi T and Vitaly C (2002). Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J and Pierce D (2000). Agrobacterium-mediated sorghum transformation. Plant. Mol. Biol 44: 789–798

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Carpita NC, Matthysse AG and Gelvin SB (2003). Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol 133: 1000–1010

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ananda Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, A., Nain, V., Kumari, C. et al. Tissue specific response of Agrobacterium tumefaciens attachment to Sorghum bicolor (L) Moench. Physiol Mol Biol Plants 14, 307–313 (2008). https://doi.org/10.1007/s12298-008-0028-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0028-9

Key words

Navigation