Skip to main content

Advertisement

Log in

Metabolic and Genetic Association of Vitamin D with Calcium Signaling and Insulin Resistance

  • REVIEW ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Various evidences have unveiled the significance of Vitamin D in diverse processes which include its action in prevention of immune dysfunction, cancer and cardiometabolic disorders. Studies have confirmed the function of VD in controlling the expression of approximately nine hundred genes including gene expression of insulin. VD insufficiency may be linked with the pathogenesis of diseases that are associated with insulin resistance (IR) including diabetes as well as obesity. Thus, VD lowers IR-related disorders such as inflammation and oxidative stress. This review provides an insight regarding the molecular mechanism manifesting, how insufficiency of VD may be connected with the IR and diabetes. It also discusses the effect of VD in maintaining the Ca2+ levels in beta cells of the pancreas and in the tissues that are responsive to insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data reported in the current article have been published.

References

  1. Manousaki D, Harroud A, Mitchell RE, Ross S, Forgetta V, Timpson NJ, et al. Vitamin D levels and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 2021;18(2):e1003536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schleu MF, Barreto-Duarte B, Arriaga MB, Araujo-Pereira M, Ladeia AM, Andrade BB, et al. Lower levels of Vitamin D are associated with an increase in insulin resistance in obese Brazilian women. Nutrients. 2021;13(9):2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abbas MA. Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017;165:369–81.

    Article  CAS  PubMed  Google Scholar 

  4. Dai Z, McKenzie JE, McDonald S, Baram L, Page MJ, Allman-Farinelli M, et al. Assessment of the methods used to develop vitamin d and calcium recommendations—a systematic review of bone health guidelines. Nutrients. 2021;13(7):2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mosekilde L. Vitamin D requirement and setting recommendation levels: long-term perspectives. Nutr Rev. 2008;66(suppl_2):S170–7.

    Article  PubMed  Google Scholar 

  6. van Driel M, van Leeuwen JP. Vitamin D endocrinology of bone mineralization. Mol Cell Endocrinol. 2017;453:46–51.

    Article  PubMed  Google Scholar 

  7. Bikle DD. Vitamin D: production, metabolism and mechanisms of action. Endotext [Internet]. 2021.

  8. Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes. 2016;7(5):89.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  10. Ercisli MF, Kahrizi D, Aziziaram Z. Environmental factors affecting the risk of breast cancer and the modulating role of vitamin D on this malignancy. Cent Asian J Environ Sci Technol Innov. 2021;2(4):175–83.

    Google Scholar 

  11. Hii CS, Ferrante A. The non-genomic actions of vitamin D. Nutrients. 2016;8(3):135.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qin X, Wang X. Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharmaceutica Sinica B. 2019;9(6):1087–98.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weyer C, Snitker S, Bogardus C, Ravussin E. Energy metabolism in African Americans: potential risk factors for obesity. Am J Clin Nutr. 1999;70(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  14. Dalmas E, editor. Role of innate immune cells in metabolism: from physiology to type 2 diabetes. Seminars in Immunopathology. Berlin: Springer; 2019.

    Google Scholar 

  15. Osmani D, Haseena S. A possible correlation between low serum vitamin-D levels and type 2 diabetes mellitus. Int J Adv Biochem Res. 2020;4:06–11.

    Article  Google Scholar 

  16. Szymczak-Pajor I, Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients. 2019;11(4):794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamza RZ, Al-Eisa RA, El-Shenawy NS. Efficacy of mesenchymal stem cell and Vitamin D in the treatment of diabetes mellitus induced in a rat model: pancreatic tissues. Coatings. 2021;11(3):317.

    Article  CAS  Google Scholar 

  18. Greco EA, Lenzi A, Migliaccio S. Role of hypovitaminosis D in the pathogenesis of obesity-induced insulin resistance. Nutrients. 2019;11(7):1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kytikova OY, Perelman JM, Novgorodtseva TP, Denisenko YK, Kolosov VP, Antonyuk MV, et al. Peroxisome proliferator-activated receptors as a therapeutic target in asthma. PPAR Research. 2020; 2020.

  20. Szymczak-Pajor I, Drzewoski J, Śliwińska A. The molecular mechanisms by which vitamin D prevents insulin resistance and associated disorders. Int J Mol Sci. 2020;21(18):6644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48(3):e219.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prakriya M. Calcium and cell function. J Physiol. 2020;598(9):1647.

    Article  CAS  PubMed  Google Scholar 

  23. Kazmierczak J, Kempe S, Kremer B. Calcium in the early evolution of living systems: a biohistorical approach. Curr Org Chem. 2013;17(16):1738–50.

    Article  CAS  Google Scholar 

  24. Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C, et al. Cell death as a result of calcium signaling modulation: a cancer-centric prospective. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2021; 1868(8):119061.

  25. Primeau JO, Armanious GP, M’lynn EF, Young HS. The sarcoendoplasmic reticulum calcium ATPase. Membrane Protein Complexes: Structure and Function. 2018:229–58.

  26. Banciu A, Banciu DD, Mustaciosu CC, Radu M, Cretoiu D, Xiao J, et al. Beta-estradiol regulates voltage-gated calcium channels and estrogen receptors in telocytes from human myometrium. Int J Mol Sci. 2018;19(5):1413.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gilon P, Chae H-Y, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium. 2014;56(5):340–61.

    Article  CAS  PubMed  Google Scholar 

  28. Zarain-Herzberg A, García-Rivas G, Estrada-Avilés R. Regulation of SERCA pumps expression in diabetes. Cell Calcium. 2014;56(5):302–10.

    Article  CAS  PubMed  Google Scholar 

  29. Kim NH, Jacob P, Dangl JL. Con-Ca2+-tenating plant immune responses via calcium-permeable cation channels. New Phytol. 2022;234(3):813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Putney Jr JW. Store-operated calcium channels. Handbook of Cell Signaling. 2010:911–4.

  31. Vultur A, Gibhardt CS, Stanisz H, Bogeski I. The role of the mitochondrial calcium uniporter (MCU) complex in cancer. Pflügers Archiv-Eur J Physiol. 2018;470(8):1149–63.

    Article  CAS  Google Scholar 

  32. Guerrero-Hernandez A, Verkhratsky A. Calcium signalling in diabetes. Cell Calcium. 2014;56(5):297–301.

    Article  CAS  PubMed  Google Scholar 

  33. Brini M, Calì T, Ottolini D, Carafoli E. Intracellular calcium homeostasis and signalling. Metallomics and the cell. Berlin: Springer; 2013. p. 119–68.

    Google Scholar 

  34. Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin. 2014;43(1):205–32.

    Article  Google Scholar 

  35. Altieri B, Grant WB, Della Casa S, Orio F, Pontecorvi A, Colao A, et al. Vitamin D and pancreas: the role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr. 2017;57(16):3472–88.

    Article  CAS  PubMed  Google Scholar 

  36. Mössner J. New advances in cell physiology and pathophysiology of the exocrine pancreas. Dig Dis. 2010;28(6):722–8.

    Article  PubMed  Google Scholar 

  37. Chen Z, Stokes DL, Rice WJ, Jones LR. Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J Biol Chem. 2003;278(48):48348–56.

    Article  CAS  PubMed  Google Scholar 

  38. Ahn C, An B-S, Jeung E-B. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol. 2015;412:302–8.

    Article  CAS  PubMed  Google Scholar 

  39. Issa CM. Vitamin D and type 2 diabetes mellitus. Ultraviolet Light in Human Health, Diseases and Environment. 2017:193–205.

  40. Nicholls DG. The pancreatic β-cell: a bioenergetic perspective. Physiol Rev. 2016;96(4):1385–447.

    Article  CAS  PubMed  Google Scholar 

  41. Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20(11):629–44.

    Article  CAS  PubMed  Google Scholar 

  42. Lee S-H, Park S-Y, Choi CS. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J. 2022;46(1):15–37.

    Article  PubMed  Google Scholar 

  43. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol. 2021;22(2):142–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Samuel VT, Shulman GI. Nonalcoholic fatty liver disease, insulin resistance, and ceramides. N Engl J Med. 2019;381(19):1866–9.

    Article  PubMed  Google Scholar 

  45. Bergin R, Kinlen D, Kedia-Mehta N, Hayes E, Cassidy FC, Cody D, et al. Mucosal-associated invariant T cells are associated with insulin resistance in childhood obesity, and disrupt insulin signalling via IL-17. Diabetologia. 2022:1–6.

  46. Chang Y-C, Chang T-J, Lee W-J, Chuang L-M. The relationship of visfatin/pre–B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids. Metab-Clin Exp. 2010;59(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao J, Wu Y, Rong X, Zheng C, Guo J. Anti-lipolysis induced by insulin in diverse pathophysiologic conditions of adipose tissue. Diabetes Metabol Syndr Obes Targets Ther. 2020;13:1575.

    Article  CAS  Google Scholar 

  48. Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 involved in tissue-specific insulin resistance formation? Oxidative Med Cell Longev. 2017;2017.

  49. Venniyoor A. PTEN: a thrifty gene that causes disease in times of plenty? Front Nutr. 2020;7:81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig. 2003;112(12):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inaishi J, Saisho Y. Beta-cell mass in obesity and type 2 diabetes, and its relation to pancreas fat: a mini-review. Nutrients. 2020;12(12):3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keane KN, Cruzat VF, Carlessi R, De Bittencourt PIH, Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxidative medicine and cellular longevity. 2015;2015.

  53. Ramadan JW, Steiner SR, O’Neill CM, Nunemaker CS. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell Calcium. 2011;50(6):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium. 2018;69:46–61.

    Article  CAS  PubMed  Google Scholar 

  55. Garbossa SG, Folli F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev Endocr Metabol Disord. 2017;18(2):243–58.

    Article  CAS  Google Scholar 

  56. Manna P, Achari AE, Jain SK. 1, 25 (OH) 2-vitamin D 3 upregulates glucose uptake mediated by SIRT1/IRS1/GLUT4 signaling cascade in C2C12 myotubes. Mol Cell Biochem. 2018;444(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kwon E-B, Kang M-J, Ryu HW, Lee S, Lee J-W, Lee MK, et al. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. Phytomedicine. 2020;68:153178.

    Article  CAS  PubMed  Google Scholar 

  58. Ni Z, Smogorzewski M, Massry S. Effects of parathyroid hormone on cytosolic calcium of rat adipocytes. Endocrinology. 1994;135(5):1837–44.

    Article  CAS  PubMed  Google Scholar 

  59. Sung C-C, Liao M-T, Lu K-C, Wu C-C. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012.

  60. Muscogiuri G, Chavez AO, Gastaldelli A, Perego L, Tripathy D, Saad MJ, et al. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Curr Vasc Pharmacol. 2008;6(4):301–12.

    Article  CAS  PubMed  Google Scholar 

  61. Liao L, Song D, Shi B, Chen M, Wu L, Xu J, et al. Inhibition of CCR8 attenuates Ang II-induced vascular smooth muscle cell injury by suppressing the MAPK/NF-κB pathway. Iran J Basic Med Sci. 2022;25(9).

  62. Angellotti E, Pittas AG. The role of vitamin D in the prevention of type 2 diabetes: to D or not to D? Endocrinology. 2017;158(7):2013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gilsanz V, Kremer A, Mo AO, Wren TA, Kremer R. Vitamin D status and its relation to muscle mass and muscle fat in young women. J Clin Endocrinol Metab. 2010;95(4):1595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carling D, Sanders M, Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes. 2008;32(4):S55–9.

    Article  CAS  Google Scholar 

  65. Leung PS. The potential protective action of vitamin D in hepatic insulin resistance and pancreatic islet dysfunction in type 2 diabetes mellitus. Nutrients. 2016;8(3):147.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fridlyand L, Philipson L. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab. 2006;8(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  67. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt Jr PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527–50.

    Article  CAS  PubMed  Google Scholar 

  68. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.

    Article  CAS  PubMed  Google Scholar 

  69. Kim SM, Choi HJ, Lee JP, Kim DK, Oh YK, Kim YS, et al. Prevalence of vitamin D deficiency and effects of supplementation with cholecalciferol in patients with chronic kidney disease. J Ren Nutr. 2014;24(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  70. Berridge MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol. 2017;595(22):6825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  72. Calton EK, Keane KN, Soares MJ. The potential regulatory role of vitamin D in the bioenergetics of inflammation. Curr Opin Clin Nutr Metab Care. 2015;18(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  73. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev. 2016;68:694–713.

    Article  CAS  PubMed  Google Scholar 

  74. Silvagno F, De Vivo E, Attanasio A, Gallo V, Mazzucco G, Pescarmona G. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS ONE. 2010;5(1):e8670.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA. Mitochondrial potassium channels: a novel calcitriol target. Cell Mol Biol Lett. 2022;27(1):1–20.

    Article  Google Scholar 

  76. Clemente-Postigo M, Muñoz-Garach A, Serrano M, Garrido-Sánchez L, Bernal-López MR, Fernández-García D, et al. Serum 25-hydroxyvitamin D and adipose tissue vitamin D receptor gene expression: relationship with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2015;100(4):E591–5.

    Article  CAS  PubMed  Google Scholar 

  77. Ryynänen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58(10):2036–45.

    Article  PubMed  Google Scholar 

  78. Matafome P, Seiça R. Function and dysfunction of adipose tissue. Obes Brain Funct. 2017:3–31.

  79. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.

    Article  Google Scholar 

  80. Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177–89.

    Article  CAS  PubMed  Google Scholar 

  81. Kong J, Chen Y, Zhu G, Zhao Q, Li YC. 1, 25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue. J Endocrinol. 2013;216(2):265–71.

    Article  CAS  PubMed  Google Scholar 

  82. Walker GE, Ricotti R, Roccio M, Moia S, Bellone S, Prodam F, et al. Pediatric obesity and vitamin D deficiency: a proteomic approach identifies multimeric adiponectin as a key link between these conditions. PLoS ONE. 2014;9(1):e83685.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003;26(8):2442–50.

    Article  CAS  PubMed  Google Scholar 

  84. Neyestani TR, Hajifaraji M, Omidvar N, Eshraghian MR, Shariatzadeh N, Kalayi A, et al. High prevalence of vitamin D deficiency in school-age children in Tehran, 2008: a red alert. Public Health Nutr. 2012;15(2):324–30.

    Article  PubMed  Google Scholar 

  85. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12.

  86. Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr Rev. 2021;42(1):1–28.

    Article  PubMed  Google Scholar 

  87. Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med. 1999;130(8):671–80.

    Article  CAS  PubMed  Google Scholar 

  88. Ambad R, Jha RK, Chandi DH, Hadke S. Association of leptin in diabetes mellitus and obesity. Res J Pharm Technol. 2020;13(12):6295–9.

    Article  Google Scholar 

  89. Kaneko I, Sabir MS, Dussik CM, Whitfield GK, Karrys A, Hsieh JC, et al. 1, 25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J. 2015;29(9):4023–35.

    Article  CAS  PubMed  Google Scholar 

  90. Najafi M, Fatolahi H. The effect of resistance training and vitamin D on leptin and HDL-C in overweight women. Int J Sport Stud Health. 2020;3(1).

  91. Mutt SJ, Hyppönen E, Saarnio J, Järvelin M-R, Herzig K-H. Vitamin D and adipose tissue—more than storage. Front Physiol. 2014;5:228.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α, 25-dihydroxyvitamin D3 synthesis in leptin-deficient ob/ob Mice. J Bone Miner Res. 2010;25(8):1711–23.

    Article  CAS  PubMed  Google Scholar 

  93. Bouillon R, Carmeliet G, Lieben L, Watanabe M, Perino A, Auwerx J, et al. Vitamin D and energy homeostasis—of mice and men. Nat Rev Endocrinol. 2014;10(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  94. Latic N, Erben RG. FGF23 and vitamin D metabolism. JBMR plus. 2021;5(12):e10558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nimitphong H, Guo W, Holick MF, Fried SK, Lee MJ. Vitamin D inhibits adipokine production and inflammatory signaling through the Vitamin D receptor in human adipocytes. Obesity. 2021;29(3):562–8.

    Article  CAS  PubMed  Google Scholar 

  96. Lorente-Cebrián S, Bustos M, Marti A, Fernández-Galilea M, Martinez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes. J Nutr Biochem. 2012;23(3):218–27.

    Article  PubMed  Google Scholar 

  97. Zhang J, McCullough PA, Tecson KM, Zhang J. Vitamin D deficiency in association with endothelial dysfunction: Implications for patients with COVID-19. Rev Cardiovasc Med. 2020;21(3).

  98. Buhrmann C, Shayan P, Banik K, Kunnumakkara AB, Kubatka P, Koklesova L, et al. Targeting NF-κB signaling by calebin a, a compound of turmeric, in multicellular tumor microenvironment: potential role of apoptosis induction in CRC cells. Biomedicines. 2020;8(8):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ding C, Wilding JP, Bing C. 1, 25-Dihydroxyvitamin D 3 protects against macrophage-induced activation of NFκB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE. 2013;8(4):e61707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao D, Trayhurn P, Bing C. 1, 25-Dihydroxyvitamin D 3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int J Obes. 2013;37(3):357–65.

    Article  CAS  Google Scholar 

  101. Berridge MJ. Vitamin D deficiency and diabetes. Biochem J. 2017;474(8):1321–32.

    Article  CAS  PubMed  Google Scholar 

  102. Cuda C, Garcia-Bailo B, Karmali M, El-Sohemy A, Badawi A. A common polymorphism near the interleukin-6 gene modifies the association between dietary fat intake and insulin sensitivity. J Inflamm Res. 2012;5:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sedaghat K, Naderian R, Pakdel R, Bandegi A-R, Ghods Z. Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area. Mol Biol Rep. 2021;48(12):7865–73.

    Article  CAS  PubMed  Google Scholar 

  104. Vranić L, Mikolašević I, Milić S. Vitamin D deficiency: consequence or cause of obesity? Medicina. 2019;55(9):541.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Landrier J-F, Karkeni E, Marcotorchino J, Bonnet L, Tourniaire F. Vitamin D modulates adipose tissue biology: possible consequences for obesity? Proc Nutr Soc. 2016;75(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  106. Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontés G. Glucolipotoxicity of the pancreatic beta cell. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biol Lipids. 2010;1801(3):289–98.

  107. Kim-Muller JY, Zhao S, Srivastava S, Mugabo Y, Noh H-L, Kim YR, et al. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metab. 2014;20(4):593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Imai Y, Dobrian A, Weaver J, Butcher M, Cole B, Galkina E, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab. 2013;15(s3):117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lytrivi M, Castell A-L, Poitout V, Cnop M. Recent insights into mechanisms of β-cell lipo-and glucolipotoxicity in type 2 diabetes. J Mol Biol. 2020;432(5):1514–34.

    Article  CAS  PubMed  Google Scholar 

  110. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Šrámek J, Němcová-Fürstová V, Kovář J. Kinase signaling in apoptosis induced by saturated fatty acids in pancreatic β-cells. Int J Mol Sci. 2016;17(9):1400.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Henriksen EJ, Prasannarong M. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol. 2013;378(1–2):15–22.

    Article  CAS  PubMed  Google Scholar 

  113. Wang H-W, Mizuta M, Saitoh Y, Noma K, Ueno H, Nakazato M. Glucagon-like peptide–1 and candesartan additively improve glucolipotoxicity in pancreatic β-cells. Metabolism. 2011;60(8):1081–9.

    Article  CAS  PubMed  Google Scholar 

  114. Seferovic JP, Solomon SD, Seely EW. Potential mechanisms of beneficial effect of sacubitril/valsartan on glycemic control. Ther Adv Endocrinol Metabol. 2020;11:2042018820970444.

    Article  CAS  Google Scholar 

  115. Franca Gois PH, Wolley M, Ranganathan D, Seguro AC. Vitamin D deficiency in chronic kidney disease: Recent evidence and controversies. Int J Environ Res Public Health. 2018;15(8):1773.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Karras SN, Anagnostis P, Antonopoulou V, Tsekmekidou X, Koufakis T, Goulis DG, et al. The combined effect of vitamin D and parathyroid hormone concentrations on glucose homeostasis in older patients with prediabetes: a cross-sectional study. Diab Vasc Dis Res. 2018;15(2):150–3.

    Article  CAS  PubMed  Google Scholar 

  117. Cheng Q, Leung PS. An update on the islet renin–angiotensin system. Peptides. 2011;32(5):1087–95.

    Article  CAS  PubMed  Google Scholar 

  118. Shukla AK, Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: an update. High Blood Press Cardiovasc Prev. 2021;28(2):129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng Q, Li Y, Boucher B, Leung P. A novel role for vitamin D: modulation of expression and function of the local renin–angiotensin system in mouse pancreatic islets. Diabetologia. 2011;54(8):2077–81.

    Article  CAS  PubMed  Google Scholar 

  120. Mutt SJ, Raza GS, Mäkinen MJ, Keinänen-Kiukaanniemi S, Järvelin MR, Herzig KH. Vitamin D deficiency induces insulin resistance and re-supplementation attenuates hepatic glucose output via the PI3K-AKT-FOXO1 mediated pathway. Mol Nutr Food Res. 2020;64(1):1900728.

    Article  CAS  Google Scholar 

  121. Cheng Q, Boucher B, Leung P. Modulation of hypovitaminosis D-induced islet dysfunction and insulin resistance through direct suppression of the pancreatic islet renin–angiotensin system in mice. Diabetologia. 2013;56(3):553–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors are highly indebted to Director Centre of Research for Development, University of Kashmir for providing the necessary guidance to make the present study possible. The Author namely Najeebul Tarfeen is a recipient of ICMR-JRF (No. 3/1/3/JRF-2019/HRD (LS).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

N.T. had written the paper, K.U.N., M.B.A., A.A.W. had helped in editing the paper. B.A.G. gave final shape to the paper.

Corresponding author

Correspondence to Bashir Ahmad Ganai.

Ethics declarations

Conflict of interest

The author’s declare that they have no conflict of interest.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarfeen, N., Nisa, K.U., Ahmad, M.B. et al. Metabolic and Genetic Association of Vitamin D with Calcium Signaling and Insulin Resistance. Ind J Clin Biochem 38, 407–417 (2023). https://doi.org/10.1007/s12291-022-01105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01105-0

Keywords

Navigation