Skip to main content
Log in

No Evidence for Mutations that Deregulate GARS–AIRS–GART Protein Levels in Children with Down Syndrome

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

GARSAIRSGART is crucial in studies of Down syndrome (DS)-related mental retardation due to its chromosomal location (21q22.1), involvement in de novo purine biosynthesis and over-expression in fetal DS brain postmortem samples. GARSAIRSGART regions important for structure–function were screened for mutations that might alter protein levels in DS patients. Mutation screening relied on multiplex/singleplex PCR-based amplification of genomic targets followed by amplicon size determination/fingerprinting. Serum protein samples were resolved by SDS-PAGE and immunoblotted with a GARS–AIRS–GART monoclonal antibody. No variation in amplicon size/fingerprints was observed in regions encoding the ATP-binding, active site residues of GARS, the structurally important glycine-rich loops of AIRS, substrate-binding, flexible and folate-binding loops of GART or the poly-adenylation signal sequences. The de novo occurrence or inheritance of large insertion/deletion/rearrangement-type mutations is therefore excluded. Immunoblots show presence of GARS–AIRS–GART protein in all patient samples, with no change in expression levels with respect to either sex or developmental age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Epstein CJ. Down syndrome (Trisomy21). In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B, editors. Metabolic and molecular bases of inherited diseases. New York: Vol. 1, McGraw Hill Medical Publishing Division; 2001. p. 1223–1256.

  2. Patterson D, Graw S, Jones C. Demonstration by somatic cell genetics, of coordination of genes for two enzymes of purine synthesis assigned to human chromosome 21. Proc Natl Acad Sci USA. 1981;78:405–9.

    Article  PubMed  CAS  Google Scholar 

  3. Hard RG, Benkovic SJ, Van Keuren ML, Graw SL, Drabkin HA, Patterson D. Assignment of a third purine biosynthetic gene (Glycinamide ribonucleotide transformylase) to human chromosome 21. Am J Hum Genet. 1986;39:179–85.

    Google Scholar 

  4. Brodsky G, Barnes T, Bleskan J, Becker L, Cox M, Patterson D. The human GARS–AIRS–GART gene encodes two proteins which are differentially expressed during human brain development and temporally over-expressed in cerebellum of individuals with Down syndrome. Hum Mol Genet. 1997;6:2043–50.

    Article  PubMed  CAS  Google Scholar 

  5. Nelson DL, Cox MM. Biosynthesis of amino acids, nucleotides and related molecules. In: Lehninger Principles of Biochemistry. New York: Worth Publishers Macmillan Press Ltd; 2000. p. 849–52.

  6. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, et al. The DNA sequence of human chromosome 21. Nature. 2000;405:311–9.

    Article  PubMed  CAS  Google Scholar 

  7. Aimi J, Qiu H, Williams J, Zalkin H, Dixon JE. De novo purine biosynthesis: cloning of human and avian cDNAs encoding the tri-functional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Nucleic Acids Res. 1990;18:72–6665.

    Article  Google Scholar 

  8. Kan JLC, Moran RG. Intronic polyadenylation in the human glycinamide ribonucleotide formyltransferase gene. Nucleic Acids Res. 1997;25:3118–23.

    Article  PubMed  CAS  Google Scholar 

  9. Alexiou M, Leese HJ. Purine utilization, de novo synthesis and degradation in mouse pre-implantation embryos. Development. 1992;114:185–92.

    PubMed  CAS  Google Scholar 

  10. Malmanche N, Clark DV. Prat, a purine de novo synthesis gene, has a pleiotropic maternal-effect phenotype. Genetics. 2004;168:2011–23.

    Article  PubMed  CAS  Google Scholar 

  11. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MAR, Reed JK, et al. Trophic effects of purines in neurons and glial cells. Prog Neurobiol. 1999;59:6663–90.

    Article  Google Scholar 

  12. Appleton MD, Haab W, Burti U, Orsulak PJ. Plasma urate levels in mongolism. Am J Ment Defic. 1969;74:196–9.

    PubMed  CAS  Google Scholar 

  13. Puukka R, Puukka M, Perkkila L, Kouvalainen K. Levels of some purine metabolizing enzymes in lymphocytes from patients with Down syndrome. Biochem Med Metab Biol. 1986;36:45–50.

    Article  PubMed  CAS  Google Scholar 

  14. Wang W, Ma SK, Chan AYY, Prior J, Erber WN, Chan LC, Chui DHK, Chong SS. Single tube multiplex PCR screen for Anti-3.7 and Anti-4.2 α globin gene triplication. Clin Chem. 2003;49:1679–82.

    Article  PubMed  CAS  Google Scholar 

  15. Banerjee D, Nandagopal K. Phyogenetic analysis and in silico characterization of the GARSAIRSGART gene which codes for a trifunctional enzyme protein involved in de novo purine biosynthesis. Mol Biotechnol. 2009;42:306–19.

    Article  PubMed  CAS  Google Scholar 

  16. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. Deletion screening of Duchenne muscular dystrophy locus via multiplex PCR amplification. Nucleic Acids Res. 1988;16:11141–51.

    Article  PubMed  CAS  Google Scholar 

  17. Dreesen JCFM, Jacobs LJAM, Bras M, Herbergs J, Dumoulin JCM, Geraedts JPM, Evers JLH, Smeets HJM. Multiplex PCR of polymorphic markers flanking the CFTR gene; a general approach for preimplantation genetic diagnosis of cystic fibrosis. Mol Hum Rep. 2000;6:391–6.

    Article  CAS  Google Scholar 

  18. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn Text Revised (DSM-IV TR 2000) Version. Washington DC: American Psychiatric Association Press; 2000. p. 39–46.

    Book  Google Scholar 

  19. Weschler D. Weschler intelligence scale for children. 4th Edition ed. San Antonio: The physiological corporation; 2003. p. 1–6.

    Google Scholar 

  20. Miller SA, Dykes DA, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  PubMed  CAS  Google Scholar 

  21. Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain: a practical approach. J Clin Lab Anal. 2002;16:47–51.

    Article  PubMed  CAS  Google Scholar 

  22. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23:504–11.

    PubMed  CAS  Google Scholar 

  23. Smith JA. Analysis of proteins. In: Ausubel FA, Brent R, Kngston RE, Moore DD, Seidman JG, Smith JA, Struhl K editors. Current protocols in molecular biology. Vol. 3. London: Greene Publishing House and Wiley Interscience; 1987: 10.0.1–10.17.5.

  24. Hurst LD. Genetics and the understanding of selection. Nat Rev Genet. 2009;10:83–93.

    Article  PubMed  CAS  Google Scholar 

  25. Kappock TJ, Ealick SE, Stubbe JA. Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol. 2000;4:567–72.

    Article  PubMed  CAS  Google Scholar 

  26. Songon AN, Kumar R, Sheets ED, Benkovic SJ. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science. 2008;320:103–6.

    Article  Google Scholar 

  27. Knox AJ, Graham C, Bleskan J, Brodsky G, Patterson D. Mutations in the Chinese hamster ovary cell GART gene of de novo purine biosynthesis. Gene. 2008;429:23–30.

    Article  PubMed  Google Scholar 

  28. Cheon MS, Bajo M, Kim SH, Claudio JO, Stewart AK, Patterson D, et al. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part II). Amino Acids. 2003;24:119–25.

    PubMed  CAS  Google Scholar 

  29. Cheon MS, Kim SH, Yaspo ML, Blasi F, Aoki Y, Melen K, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis (Part I). Amino Acids. 2003;24:111–7.

    PubMed  CAS  Google Scholar 

  30. Li C-M, Guo M, Salas M, Schupf N, Silverman W, Zigman WB, et al. Cell-type specific over-expression of chromosome21 genes in fibroblasts and fetal hearts with trisomy21. BMC Med Genet. 2006;7:24–38.

    Article  PubMed  Google Scholar 

  31. Kahlem P, Sultan M, Herwig R, Steinfath M, Balzereit D, Eppens B, et al. Transcript level alterations reflect gene dosage effects across multiplex tissues in a mouse model of Down syndrome. Genome Res. 2004;14:1258–67.

    Article  PubMed  CAS  Google Scholar 

  32. Olson LE, Roper RJ, Sengstaken CL, Peterson EA, Aquino V, Galdzicki Z, Siarey R, et al. Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet. 2007;16:774–82.

    Article  PubMed  CAS  Google Scholar 

  33. Nikolaienko O, Nguen C, Crinc LS, Cios KJ, Gardiner K. Human chromosome 21/Down syndrome gene function and pathway database. Gene. 2005;364:90–8.

    Article  PubMed  CAS  Google Scholar 

  34. Korbel JO, Tirosh-Wagner T, Urban AE, Chen X-N, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA. 2009;106:12031–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Debarati Ghosh and Disha Banerjee are recipients of Senior Research Fellowships from CSIR grant 27(0131)/04/EMR-II and DST grant SR/SO/HS-59/2003 awarded to Dr. Krishnadas Nandagopal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnadas Nandagopal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, D., Ghosh, D., Chatterjee, A. et al. No Evidence for Mutations that Deregulate GARS–AIRS–GART Protein Levels in Children with Down Syndrome. Ind J Clin Biochem 27, 46–51 (2012). https://doi.org/10.1007/s12291-011-0183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-011-0183-6

Keywords

Navigation