Skip to main content
Log in

FE modeling of the cooling and tempering steps of bimetallic rolling mill rolls

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Numerical simulations enable the analysis of the stress and strain histories of bimetallic rolling mill rolls. The history of rolling mill rolls is simulated by thermo-mechanical metallurgical finite element code while considering two steps: post-casting cooling and subsequent tempering heat treatment. The model requires a notably large set of material parameters. For different phases and temperatures, Young modulus, yield limit and tangent plastic modulus are determined through compression tests. Rupture stresses and strains are obtained by tensile tests. Thermo-physical parameters are measured by such experimental methods as dilatometry, DSC (Differential Scanning Calorimetry) and Laser Flash methods. Such parameters as the transformation plasticity coefficients for the ferrite, pearlite and martensite phases are identified through an inverse method. From the simulation results, the profile of the stresses evolution at different critical times is presented. An analysis of the potential damage is proposed by comparing the predicted axial stress with rupture stresses. The perspective of the Ghosh and McClintock damage criteria is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Studer L (2008) Modelling vertical spincasting of large bimetallic rolling mills. DEA thesis. Université de Liège, Belgium

  2. Fu H, Xiao Q, Xing JD (2008) A study on the crack control of a high-speed steel roll fabricated by a centrifugal casting technique. Mater Sci Eng A 474:82–87. doi:10.1016/j.msea.2007.03.101

    Article  Google Scholar 

  3. Gao JW, Wang CY (2000) Modeling the solidification of functionally graded materials by centrifugal casting. Mater Sci Eng A 292:207–215. doi:10.1016/S0921-5093(00)01014-5

    Article  Google Scholar 

  4. Wu SP, Li CY, Guo JJ et al (2006) Numerical simulation and experimental investigation of two filling methods in vertical centrifugal casting. Trans Nonferrous Met Soc China 16:1035–1040. doi:10.1016/S1003-6326(06)60373-7

    Article  Google Scholar 

  5. Mercado-Solis RD, Talamantes-Silva J, Beynon JH, Hernandez-Rodriguez MAL (2007) Modelling surface thermal damage to hot mill rolls. Wear 263:1560–1567. doi:10.1016/j.wear.2006.12.062

    Article  Google Scholar 

  6. Domazet Z, Lukša F, Stanivuk T (2014) An optimal design approach for calibrated rolls with respect to fatigue life. Int J Fatigue 59:50–63. doi:10.1016/j.ijfatigue.2013.09.015

    Article  Google Scholar 

  7. Corral RL, Colás R, Pérez A (2004) Modeling the thermal and thermoelastic responses of work rolls used for hot rolling steel strip. J Mater Process Technol 153–154:886–893. doi:10.1016/j.jmatprotec.2004.04.090

    Article  Google Scholar 

  8. Redkin K, Hrizo C, Mardsen K, et al. (2015) Advanced analytical and non-destructive technologies for engineered roll production. Conf Commun Rolls 5

  9. Ziehenberger K, Windhager M (2005) Recent developments in HSM rougher rolls: risks and chances. Conf Mater Sci Technol

  10. Jin YM, Artemev A, Khachaturyan AG (2001) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ’2 martensite in AuCd alloys. 49:2309–2320

  11. Cottura M, Appolaire B, Finel A, Le Bouar Y (2014) Phase field study of acicular growth: role of elasticity in Widmanstätten structure. Acta Mater 72:200–210. doi:10.1016/j.actamat.2014.03.045

    Article  Google Scholar 

  12. Levitas VI (2014) Phase field approach to martensitic phase transformations with large strains and interface stresses. J Mech Phys Solids 70:154–189. doi:10.1016/j.jmps.2014.05.013

    Article  MathSciNet  MATH  Google Scholar 

  13. Parisier G, Schaffinit P, Steinbach I, Bleck W (2001) Simulation of the γ-α transformation using the phase-field method. Steel Res 72:354–360

    Article  Google Scholar 

  14. Zhu B, Chen H, Militzer M (2015) Phase-field modeling of cyclic phase transformations in low-carbon steels. Comput Mater Sci. doi:10.1016/j.commatsci.2015.01.023

    Google Scholar 

  15. Nakajima K, Apel M, Steinbach I (2006) The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study. Acta Mater 54:3665–3672

    Article  Google Scholar 

  16. Vaks VG, Stroev AY, Urtsev VN, Schmakov AV (2011) Experimental and theoretical study of the formation and growth of pearlite colonies in eutectoid steels. J Exp Theor Phys 112:961–978

    Article  Google Scholar 

  17. Cottura M, Le Bouar Y, Finel A et al (2012) A phase field model incorporating strain gradient viscoplasticity: application to rafting in Ni-base superalloys. J Mech Phys Solids 60:1243–1256

    Article  MathSciNet  Google Scholar 

  18. Levitas VI, Lee DW, Preston DL (2010) Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int J Plast 26:395–422

    Article  MATH  Google Scholar 

  19. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182

    Article  MATH  Google Scholar 

  20. McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plast 26:1280–1309

    Article  MATH  Google Scholar 

  21. Otsuka T, Brenner R, Bacroix B (2014) FFT-based modelling of transformation plasticity in polycrystalline materials during diffusive phase transformation. Key Eng Mater 622–623:687–697

    Article  Google Scholar 

  22. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69. doi:10.1016/j.ijplas.2011.12.005

    Article  Google Scholar 

  23. Knezevic M, Al-Harbi HF, Kalidindi SR (2009) Crystal plasticity simulations using discrete Fourier transforms. Acta Mater 57:1777–1784. doi:10.1016/j.actamat.2008.12.017

    Article  Google Scholar 

  24. Denis S, Gautier E, Simon A, Beck G (1985) Stress phase transformation interactions—basic principles, modelling and calculation of internal stresses. Mater Sci Technol 1:805–814

    Article  Google Scholar 

  25. Assaker D (1990) Analyse thermomecanique non lineaire par elements finis des traitements thermiques des metaux. PhD thesis. University of Liege, Belgium

  26. Habraken AM, Bourdouxhe M (1992) Coupled thermomechanical- metallurgical analysis during the cooling of steel pieces. Eur J Mech A Solids 11:381–402

    MATH  Google Scholar 

  27. Lequesne C (2009) Modeling of fracture in heavy steel welded beam-to-column connection submitted to cyclic loading by finite elments. PhD thesis. Université de Liège, Belgium. http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-07062009-125347/

  28. Pascon F (2003) 2D1/2 Thermal-mechanical model of continuous casting of steel using finite element method. PhD thesis. Université de Liège, Belgium. http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-06262007-100522/

  29. Schwartz R (2011) Study of the continuous casting of peritectic steel grades by a mesoscopic damage approach. PhD thesis. Université de Liège, Belgium. http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-08252011-194757/

  30. Casotto S, Pascon F, Habraken AM, Bruschi S (2005) Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations. Int J Mach Tools Manuf 657–664

  31. Denis S, Sjostrom S, Simon A (1987) Coupled temperature, stress, phase transformation calculation model numerical illustration of the internal stresses evolution during cooling of an Eutectoid carbon steel cylinder. Metall Trans 18A:1203–1212

    Article  Google Scholar 

  32. Geijselaers HJM (2003) Numerical simulation of stresses due to solid state transformations: the simulations of laser hardening. University of Twente

  33. Li J, Tang L, Li S, Wu X (2013) Finite element simulation of deep cryogenic treatment incorporating transformation kinetics. Mater Des 47:653–666. doi:10.1016/j.matdes.2012.12.076

    Article  Google Scholar 

  34. Lee SJ, Matlock DK, Van Tyne CJ (2013) Comparison of two finite element simulation codes used to model the carburizing of steel. Comput Mater Sci 68:47–54. doi:10.1016/j.commatsci.2012.10.007

    Article  Google Scholar 

  35. Bok HH, Choi J, Barlat F et al (2014) Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect. Int J Plast 58:154–183. doi:10.1016/j.ijplas.2013.12.002

    Article  Google Scholar 

  36. Lee CH, Chang KH (2011) Prediction of residual stresses in high strength carbon steel pipe weld considering solid-state phase transformation effects. Comput Struct 89:256–265. doi:10.1016/j.compstruc.2010.10.005

    Article  Google Scholar 

  37. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2. doi:10.1115/1.3443401

    Article  Google Scholar 

  38. Rousselier G, Devaux JC, Mottet G, Devesa G (1989) A methodology for ductile fracture analysis based on damage mechanics: an illustration of local approach of fracture. ASTM Spec Tech Publ 995th ed. 332–354

  39. Lemaitre J (1985) Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51:31–49

    Article  MATH  Google Scholar 

  40. Cerri O (2007) Rupture a chaud dans les aciers au cours de leur solidification - caracterisation experimentale et modelisation thermomecanique. PhD thesis. Ecole des mines de Paris

  41. Clift SE, Hartley P et al (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32:1–17

    Article  Google Scholar 

  42. Zhu Y, Cescotto S, Habraken AM (1992) A fully coupled elastoplastic damage modeling and fracture criteria in metalforming processes. J Mater Process Technol 32:197–204

    Article  Google Scholar 

  43. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98. doi:10.1016/j.ijmecsci.2004.02.006

    Article  Google Scholar 

  44. Mae H, Teng X, Bai Y, Wierzbicki T (2008) Comparison of ductile fracture properties of aluminum castings: sand mold vs. metal mold. Int J Solids Struct 45:1430–1444

    Article  MATH  Google Scholar 

  45. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096. doi:10.1016/j.ijplas.2007.09.004

    Article  MATH  Google Scholar 

  46. Basaran M, Wölkerling SD, Feucht M et al (2010) An extension of the GISSMO damage model based on lode angle dependence. LS-DYNA Anwenderforum

  47. El Bartali A, Zhang L, Studer L, Habraken AM (2009) Validation d’un calcul thermique métallurgique in Mécanique et mécanismes des changements de phases. In: Appolaire BA, Chirani S, Calloch S, Denis S, Leal M, Tailleur M, Aussois (eds) MECAMAT 254–258

  48. Neira-Torres I, Gilles G, Tchoufang Tchuindjang J et al (2013) Prediction of residual stresses by FE simulations on bimetallic work rolls during cooling. Comput Methods Mater Sci 13:84–91

    Google Scholar 

  49. Neira-Torres I, Gilles G, Tchoufang Tchuindjang J et al (2014) Study of residual stresses in bimetallic work rolls. Adv Mater Res 996:580–585

    Article  Google Scholar 

  50. Cescotto S, Grober H (1985) Calibration and application of an elastic viscoplastic constitutive equation for steels in hot-rolling conditions. Eng Comput 2:101–106

    Article  Google Scholar 

  51. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans AIME Iron Steel Div 135:416

    Google Scholar 

  52. Pumphrey WI, Jones FW (1948) Inter-relation of hardenability and isothermal transformation data. JISI 159:137–144

    Google Scholar 

  53. Koistinen D, Marburger R (1959) A general equation prescribing extent of the austenite-martensite transformation in pure Fe-C alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  54. Giusti J (1988) Numerical study of some types of distorsions due to quench of carburized steel pieces. Int Conf Residual Stress 3

  55. Ghosh AK (1976) A criterion for ductile fracture in sheets under biaxial loading. Metall Trans 7a:523–533

    Article  Google Scholar 

  56. McClintock FA, Kaplan SM, Berg CA (1986) Ductile fracture by hole growth in shear bands. Int J Mech Sci 2:614–627

    Google Scholar 

  57. Lecomte-Beckers J, Sinnaeve M, Tchoufang Tchuindjang J (2012) Current developments of alloyed steels for hot strip roughing mills: characterization of high-chromium steel and semi-high speed steel. Iron Steel Technol 33–40

  58. Hwang KC, Lee S, Lee HC (1998) Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part II. Fracture behavior. Mater Sci Eng A 1–8. doi: 10.1016/S0921-5093(98)00626-1

  59. Tuninetti V (2014) Experimental and numerical study of the quasi-static behavior of Ti-6Al-4V. PhD thesis. Université de Liège, Belgium. http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-04252014-163021/

  60. Tuninetti V, Habraken AM (2014) Impact of anisotropy and viscosity to model the mechanical behavior of Ti-6Al-4V alloy. Mater Sci Eng A 605:39–50

    Article  Google Scholar 

  61. Ghaffarian H et al (2015) Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scr Mater 95:23–26

    Article  Google Scholar 

  62. Inoue A, Ogura T, Masumoto T (1977) Microstructures of deformation and fracture of Cementite in Pearlitic carbon steels strained at various temperatures. Metall Trans A 8A:1689–1695

    Article  Google Scholar 

  63. Terashima T, Tomota Y, Isaka M et al (2006) Strength and deformation behavior of bulky cementite synthesized by mechanical milling and plasma-sintering. Scr Mater 54:1925–1929

    Article  Google Scholar 

  64. Meyer L, Weise A, Hahn F (1997) Comparison of constitutive flow curve relations in cold and hot forming. J Phys 4(Fr 07):C3–13–C3–20

    Google Scholar 

  65. Tchoufang Tchuindjang J, Neira Torres I, Flores VP et al (2015) Phase transformations and crack initiation in a high-chromium cast steel under hot compression tests. J Mater Eng Perform 24:2025–2041

    Article  Google Scholar 

  66. Bala P (2009) The kinetics of phase transformation during tempering of tool steels with different carbon content. Arch Metall Mater 54:491–498

    Google Scholar 

  67. Bala P, Pacyna J (2009) The kinetics of phase transformations during continuous heating from as-quenched state in high-speed steels. Arch Mater Sci Eng 37:5–12

    Google Scholar 

  68. Herman M (2006) Etude métallurgique et thermomécanique du phénomène de bris lors de traitements thermiques de cylindres de laminoir en acier moyen chrome. PhD thesis. Université de Liège, Belgium

  69. Coret M (2002) Experimental study of the phase transformation plasticity of 16MND5 steel low carbon steel under multiaxial loading. Int J Plast 18:1707–1727

    Article  Google Scholar 

  70. Denis S, Archambault P, Aubry C et al (1999) Modeling of phase transformations kinetics and coupling with heat treatment residual stress predictions. J Phys 4(Fr 09):323–332

    Google Scholar 

  71. Yanagisawa O, Lui TS (1983) Influence of the structure on the 673 K embrittlement of ferritic spheroidal graphite cast iron. Trans Jpn Inst Metals 24:858–867

    Article  Google Scholar 

  72. Hung-Mao L, Truan-Sheng L, Li-Hui C (2003) Effect of silicon content on intergranular embrittlement of ferritic spheoridal graphite cast iron suffered from cyclic heating. Mater Trans 44:173–180

    Article  Google Scholar 

  73. Tholence F, Norell M (2001) High temperature corrosion of cast irons and cast steels in dry air. Mater Sci Forum 369–372:197–204

    Article  Google Scholar 

  74. Minnebo P, Nilsson K-F, Blagoeva D (2007) Tensile, compression and fracture properties of thick-walled ductile cast iron components. J Mater Eng Perform 16:35–45

    Article  Google Scholar 

  75. Habraken AM (1989) Contribution à la modélisation du formage des métaux par la méthode des éléments finis. PhD thesis. Université de Liège, Belgium. http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-12022009-154016/

  76. Otsuka T (2014) Micromechanical modelling of transformation plasticity in steels based on fast Fourier transform numerical scheme. PhD thesis. Paris 13 University, France

Download references

Acknowledgments

The authors acknowledge to the National commission for scientific and technological research (Conicyt) Chile, for financial help. Interuniversity Attraction Poles Program-Belgian State-Belgian Science Policy P7 INTEMATE is thanked for its support. As research Director of FRS-FNRS, AM Habraken thanks this organization for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Neira Torres.

Appendices

Appendix A: Input parameters

Most part of the required parameters for numerical simulations have been provided by tables or figures in this work (Young moduli, yield limits, tangent plastic moduli for interesting phases and temperatures, fracture strains, thermo-physical properties, transformation plasticity coefficient). Parameters such as TTT diagrams, Coefficient of Thermal Expansion (CTE) and transformation strains for both SGI and HCS materials, have been given in previous works [48, 49]. However, in order to provide a complete set of data, these parameters are here reminded.

TTT diagrams

Within the numerical simulations, the phase transformation model is based on TTT diagrams. For SGI and HCS grades, TTT diagrams of Fig. 20 were obtained using inverse method through FE code using a CCT diagram as input data.

Fig. 20
figure 20

TTT diagrams (a) SGI grade (b) HCS grade

Coefficient of Thermal Expansion (CTE)

Dilatometry tests were performed using a dilatometer NETZSCH - 402C. Each tested sample was reheated at 3 °C/min up to 1025 °C with a holding time of 1 h and then cooled to room temperature at 3 °C/min. From the experimental curves, the incremental CTE for non-linear FE code αFE for each case is computed (see the result in Fig. 21). These curves define the parameters used within cooling and heating simulations.

Fig. 21
figure 21

Coefficient of Thermal Expansion (a) SGI material (b) HCS material

Transformation strain

The inverse method was applied to identify the correct value of austenite transformation strains to ferrite and pearlite phases ε tr Fe − Pe for SGI material and to martensite phase ε tr Ma for HCS material. The value of ε tr k was modified several times to accurately predict peaks appearing in the experimental dilatometry curves for each material during the cooling sequence. Displacements computed must recover the variation of length experimentally measured. For SGI material, the same value of transformation strain was considered for ferritic and pearlitic transformation. For HCS material, only martensitic transformation case was studied. Values of transformation strains obtained by inverse modelling are given in Table 7.

Table 7 Transformation strain values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neira Torres, I., Gilles, G., Tchoufang Tchuindjang, J. et al. FE modeling of the cooling and tempering steps of bimetallic rolling mill rolls. Int J Mater Form 10, 287–305 (2017). https://doi.org/10.1007/s12289-015-1277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1277-0

Keywords

Navigation