Skip to main content

Advertisement

Log in

Experimental contribution to the study of the Ti6Al4V chip formation in orthogonal cutting on a milling machine

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Machining by removing chips with a cutting tool is a complex operation involving many phenomena. Ti6Al4V chip formation, and particularly when it is saw-toothed (or segmented), still needs to be investigated numerically and experimentally to understand the mechanisms it involves. The use of numerical modeling has been increasingly growing since the last decade but experiments remain essential to validate the models. These two approaches are complementary and closely linked. Experiments are, however, time consuming and often difficult to implement. Moreover, orthogonal cutting as a method should be employed as to compare with the modelings. This paper presents a novel setup to perform strictly orthogonal cutting experiments with a milling machine at cutting speeds of up to 30 m/min. The configuration adopted does not require the machine tool to be modified and the small dimensions of the sample limit the costs linked to the workpiece material. The experiments, performed with the titanium alloy Ti6Al4V, constitute the basis of a benchmark for numerical orthogonal cutting validation based on chip morphology (without chip distortion due to unrolling), mechanism of chip formation, cutting forces and teeth formation frequency. The experimental results of this study highlight that the formation of a saw-toothed chip is due to the deformation and the propagation of a crack inside the primary shear zone for the cutting conditions of this paper. They also show that there is no material between the teeth on the lateral faces of the chip and that the FFT of the roughness of the machined surface is a good estimator for the teeth formation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Altintas Y (2012) Manufacturing automation metal cutting mechanics machine tool vibrations, and CNC design. Cambridge University Press

  2. Bai Y, Dodd B (1992) Adiabatic shear localisation occurrence theories and applications. Pergamon Press

  3. Bäker M, Rosler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513. doi:10.1016/S0045-7949(02)00023-8

    Article  Google Scholar 

  4. Bouchnak TB (2010) Study of extreme stress behavior and machinability of a new aeronautical titanium alloy: the ti555-3. Arts et Métiers ParisTech - Centre de Angers, PhD thesis

  5. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48:275–288. doi:10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  6. Chevalier A (2003) Guide du dessinateur industriel. Hachette Technique

  7. Combres Y (2013) Propriétés du titane et de ses alliages, Editions T.I.

  8. Combres Y, Champin B (2013) Traitements thermiques des alliages de titane, Editions T.I.

  9. Destefani J (1990) Introduction to titanium and titanium alloys, properties and selection nonferrous alloys and special-purpose materials, vol 2. ASM Handbook

  10. Ducobu F, Rivière-Lorphèvre E, Filippi E (2011) A lagrangian FEM model to produce Saw-toothed Macro-chip and to study the depth of cut influence on its formation in orthogonal cutting of Ti6Al4V. Adv Mater Res 223:3–11. doi:10.4028/www.scientific.net/AMR.223.3

    Article  Google Scholar 

  11. Ducobu F, Rivière-Lorphèvre E, Filippi E (2013) Chip formation in Micro-cutting. J Mech Eng Autom 3:441–448

    Google Scholar 

  12. Ducobu F, Rivière-Lorphèvre E, Filippi E (2014) Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting. Int J Mech Sci 81:77–87. doi:10.1016/j.ijmecsci.2014.02.017

    Article  Google Scholar 

  13. Ezugwu E, Wang Z (1997) Titanium alloys and their machinability – a review. J Mater Process Technol 68:262–274. doi:10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  14. Fourment L, Delalondre F (2008) A 3D study of the influence of friction on the adiabatic Shear Band formation during High Speed Machining, Proceedings of the ESAFORM2008 Conference

  15. Gammon L, Briggs R, Packard J, Batson K, Boyer R, Domby C (2004) Metallography and microstructures of titanium and its alloys. Metallography and Microstructures, ASM Hanbook, vol 9, pp 899–917

  16. Gey N (1997) Étude des changements de textures par transformation de phase βα dans des produits TA6V laminés chaud. PhD thesis, Université de Metz

  17. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133. doi:10.1016/j.jmatprotec.2004.01.028

    Article  Google Scholar 

  18. Jousset H (2008) Viscoplasticity and microstructures of a titanium alloy : effects of temperature and strain rate. PhD thesis, École des Mines de Paris

  19. Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys, Wear, vol 76., pp 15–34

  20. Lampman S (1990) Wrought Titanium and Titanium Alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol 2. ASM Handbook

  21. Mahnama M, Movahhedy M (2010) Prediction of machining chatter based on FEM simulation of chip formation under dynamic conditions. Int J Mach Tools Manuf 50:611–620. doi:10.1016/S0749-6419(01)00003-1

    Article  Google Scholar 

  22. Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti-6Al-4V experiments and modeling. Int J Plast 18:443–459. doi:10.1016/S0749-6419(01)00003-1

    Article  Google Scholar 

  23. Owen D, Vaz M (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461. doi:10.1016/S0045-7825(98)00220-5

    Article  Google Scholar 

  24. Pantalé O, Bacaria JL, Dalverny O, Rakotomalala R, Caperaa S (2004) 2D and 3D numerical models of metal cutting with damage effects. Comput Methods Appl Mech Eng 193:4383–4399. doi:10.1016/j.cma.2003.12.062

    Article  Google Scholar 

  25. SECO TOOLS (2011) Turning catalog and technical guide 2012. SECO TOOLS AB

  26. Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 50:943–960. doi:10.1016/j.ijmachtools.2010.08.004

    Article  Google Scholar 

  27. Sun S, Brandt M, Dargusch M (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568. doi:10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  28. The ASM Handbook Committee (1997) Fatigue and Fracture Properties of Titanium Alloys, vol 2, 10th. ASM International

  29. The French Titanium Association (2013) The french titanium association Titanium a material for the biomedical industry. http://www.titane.asso.fr/biomedical-eng.html

  30. The French Titanium Association (2013) The french titanium association Markets and applications. http://www.titane.asso.fr/markets-and-applications.html.

  31. Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121:163–172. doi:10.1115/1.2831200

    Article  Google Scholar 

  32. Wan Z, Zhu Y, Liu H, Tang Y (2012) Microstructure evolution of adiabatic shear bands and mechanisms of saw-tooth chip formation in machining Ti6Al4V. Mater Sci Eng A 531:155–163. doi:10.1016/j.msea.2011.10.050

    Article  Google Scholar 

  33. Ye G, Chen Y, Xue F, Dai L (2014) Critical cutting speed for onset of serrated chip flow in high speed machining. Int J Mach Tools Manuf 86:18–33. doi:10.1016/j.ijmachtools.2014.06.006

    Article  Google Scholar 

  34. Zhang Y, Mabrouki T, Nelias D, Gong Y (2011) FE-model for titanium alloy (Ti-6Al-4V) cutting based on the identification of limiting shear stress at tool-chip interface. Inter J Mater Forming 4:11–23. doi:10.1007/s12289-010-0986-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Technofutur Industrie for making their experimental resources available to us; the Metallurgy Department of the UMONS Faculty of Engineering for making their microstructure analysis resources available to us; Prof. P. Lambert from the Université Libre de Bruxelles for the high speed camera; and Dr F. Dagrain from the Department of Structural Mechanics of the UMONS Faculty of Engineering for giving us the opportunity to make some chip observations under the Keyence digital microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ducobu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducobu, F., Rivière-Lorphèvre, E. & Filippi, E. Experimental contribution to the study of the Ti6Al4V chip formation in orthogonal cutting on a milling machine. Int J Mater Form 8, 455–468 (2015). https://doi.org/10.1007/s12289-014-1189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1189-4

Keywords

Navigation