Skip to main content

Advertisement

Log in

Blood Substitutes: Possibilities with Nanotechnology

  • Review Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Nanotechnology deals with molecules in the nanometer (10−9) range and is currently being used successfully in the field of medicine. Nanotechnology has important implications in nearly all the branches of medicine and it has all the capabilities to revolutionize the vast field of medicine in future. Nanotechnological advancements have been used for the preparation of artificial hemoglobin. It is formed by assembling the hemoglobin molecules into a soluble complex. A recent approach includes the assembling of this artificial hemoglobin with enzymes such as catalase and superoxide dismutase into a nano-complex. This complex acts as an oxygen carrier as well as an antioxidant in conditions with ischemia–reperfusion injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aggarwal S, Sharma V (2012) Attitudes and problems related to voluntary blood donation in India: a short communication. Ann Trop Med Public Health 5:50–52

    Google Scholar 

  2. Blood safety and clinical technology. Available at-http://www.searo.who.int/en/section10/section17/section1976.htm

  3. Chaitanya kumar IS, Yashoverdhan (2011) Efforts to meet the challenges of 100 % voluntary blood donation. Asian J Transfus Sci 5:68–69

    Article  Google Scholar 

  4. Based on WHO Global Database on Blood Safety (GDBS) 2008, with responses received from 164 countries, covering 92 % of the world’s population. Available at http://www.who.int/bloodsafety/global_database/GDBS_Summary_Report_2011.pdf

  5. Geyer RP, Monroe RG, Taylor K (1968) Survival of rats having red cells totally replaced with emulsified fluorocarbon. Federation Proc 27:384–390

    Google Scholar 

  6. Sloviter H, Kamimoto T (1967) Erythrocyte substitute for perfusion of brain. Nature 216:458–460

    Article  CAS  PubMed  Google Scholar 

  7. Keipert PE (1998) Perfluorochemical emulsions: future alternatives to transfusion. Blood Subst Princ Meth Prod Clin Trials 2:127–156

    CAS  Google Scholar 

  8. Spahn DR, Leone BJ, Reves JG, Pasch T (1994) Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg 78:1000–1021

    Article  CAS  PubMed  Google Scholar 

  9. Riess JG (1992) Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater Artif Cells Immobil Biotechnol 20:183–202

    CAS  Google Scholar 

  10. Lowe KC (1999) Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev 13:171–184

    Article  CAS  PubMed  Google Scholar 

  11. Riess JG, Krafft MP (1998) Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 19:1529–1539

    Article  CAS  PubMed  Google Scholar 

  12. Mattrey RF (1994) The potential use of Perflourochemicals (PFC’s) in diagnostic imaging. Artif cells, Blood Substit Immobil Biotechnol 22:295–313

    Article  CAS  Google Scholar 

  13. Antonini E, Brunori M (1971) “Kinetics of the reactions of hemoglobin and myoglobin with ligands” Chapter 8 in: hemoglobin and myoglobin in their reactions with ligands. Frontiers of Biol, North-Holland Publishing Company 21:189–217

    Google Scholar 

  14. Ackers GK, Johnson ML (1981) Linked functions in allosteric proteins. J Mol Bio 147:559–582

    Article  CAS  Google Scholar 

  15. Benesch R, Benesch RE (1969) Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 221:618–622

    Article  CAS  PubMed  Google Scholar 

  16. Antonini E, Condò SG, Giardina B, Ioppolo C, Bertollini A (1982) The effect of pH and d-glycerate 2,3 bisphosphate on the O2 equilibrium of normal and SH(_93)-modified human haemoglobin. Eur J Biochem 121:325–328

    Article  CAS  PubMed  Google Scholar 

  17. Oto B. Respiration and hemoglobin, EMS basics. Available at: http://emsbasics.com/2011/08/03/respiration-and-hemoglobin/

  18. Kresie L (2001) Artificial blood: an update on current red cell and platelet substitutes. BUMC Proc 14:158–161

    CAS  Google Scholar 

  19. Winslow RM (2006) Current status of oxygen carriers (‘blood substitutes’). Vox Sang 91:102–110

    Article  CAS  PubMed  Google Scholar 

  20. Carson JL, Noveck H, Berlin JA, Gould SA (2002) Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion 42:812–818

    Article  PubMed  Google Scholar 

  21. Chang TMS (1964) Semipermeable microcapsules. Science 146:524

    Article  CAS  PubMed  Google Scholar 

  22. Chang TMS. Artificial cells. Monograph. Charles C Thomas, Springfield, IL, 1972. (full text available at www.artcell.mcgill.ca)

  23. Chang TMS (1971) Stabilisation of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde. Biochem Biophys Res Common 44:1531–1536

    Article  CAS  Google Scholar 

  24. Chang TMS (2007) Monograph on “ARTIFICIAL CELLS: biotechnology,nanotechnology, blood substitutes, regenerative medicine, bioencapsulation,cell/stem cell therapy”. World Science Publisher, Singapore, p 452. Available at:http://www.medicine.mcgill.ca/artcell/2007%20ebook%20artcell%20web.pdf

  25. Chang TMS. Blood substitutes: principles, methods, products and clinical trials. Vol.1 Basel Karger,1997. (full text and updates available at www.artcell.mcgill.ca)

  26. Gould SA, Moore EE, Hoyt DB, Ness PM, Norris EJ, Carson JL et al (2002) The life-sustaining capacity of human polymerized Hb when red cells might be unavailable. J Am Coll Surg 195:445–452

    Article  PubMed  Google Scholar 

  27. Pearce LB, Gawryl MS, Rentko VT, Moon-Massat PF, Rausch CW (2006) HBOC-201 (Hb Glutamer-250 (Bovine), Hemopure): clinical studies. In: Winslow R (ed) Blood substitutes. Academic Press, San Diego, pp 437–450

    Chapter  Google Scholar 

  28. D’Agnillo F, Chang TMS (1998) PolyHb-superoxide dismutase. Catalase as a blood substitute with antioxidant properties. Nat Biotechnol 16:667–671

    Article  PubMed  Google Scholar 

  29. Chang TMS (1985) Artificial cells with regenerating multienzyme systems. Meth Enzymol 112:195–203

    Article  CAS  PubMed  Google Scholar 

  30. Gu KF, Chang TMS (1988) Conversion of ammonia or urea into l-leucine, l-valine and l-isoleucine using artificial cell immobilising multienzyme system and dextran-NADH+. I. Glucose dehydrogenase for cofactor recycling. J Am Soc Artif Intern Organs 11:24–28

    Google Scholar 

  31. Chang TMS, Powanda D, Yu WP (2003) Ultrathin polyethylene-glycolpolylactide copolymer membrane nanocapsules containing polymerized Hb and enzymes as nano-dimension red blood cell substitutes. Artif Cells Blood Substit Biotechnol 3:231–248

    Article  Google Scholar 

  32. Djordjevich L, Miller IF (1980) Synthetic erythrocytes from lipid encapsulated Hb. Exp Hematol 8:584

    CAS  PubMed  Google Scholar 

  33. Philips WT, Klpper RW, Awasthi VD, Rudolph AS, Cliff R, Kwasiborski VV et al (1999) Polyethylene glyco-modified liposome-encapsulated Hb: a long circulating red cell substitute. J Pharm Exp Therapeutics 288:665–670

    Google Scholar 

  34. Chang TMS (1976) Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines, and other biologicals. J Bioengineering 1:25–32

    CAS  Google Scholar 

  35. Yu WP, Chang TMS (1994) Submicron biodegradable polymer membrane Hb nanocapsules as potential blood substitutes: a preliminary report. Artif Cells Blood Substit Immobil Biotechnol 22:889–894

    Article  CAS  PubMed  Google Scholar 

  36. Yu WP, Chang TMS (1996) Submicron biodegradable polymer membrane Hb nanocapsules as potential blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 24:169–184

    Article  CAS  PubMed  Google Scholar 

  37. Chang TMS, Yu WP, Yu WP (1998) Nanoencapsulation of Hb and RBC enzymes based on nanotechnology and biodegradable polymer. In: Chang TMS (ed) Blood substitutes: principles, methods, products and clinical trials, vol 2. Karger, Basel, pp 216–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feroz Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, F., Yadav, N., Ahmad, M. et al. Blood Substitutes: Possibilities with Nanotechnology. Indian J Hematol Blood Transfus 30, 155–162 (2014). https://doi.org/10.1007/s12288-013-0309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-013-0309-5

Keywords

Navigation