Skip to main content
Log in

Comparing bioenergetic models for the optimisation of pacing strategy in road cycling

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

Road cycling performance is dependent on race tactics and pacing strategy. To optimise the pacing strategy for any race performed with no drafting, a numerical model was introduced, one that solves equations of motion while minimising the finishing time by varying the power output along the course. The power output was constrained by two different hydraulic models: the simpler critical power model for intermittent exercise (CPIE) and the more sophisticated Margaria–Morton model (M–M). These were compared with a constant power strategy (CPS). The simulation of the three different models was carried out on a fictional 75 kg cyclist, riding a 2,000 m course. This resulted in finishing times of 162.4, 155.8 and 159.3 s and speed variances of 0.58, 0.26 and 0.29 % for the CPS, CPIE and M–M simulations, respectively. Furthermore, the average power output was 469.7, 469.7 and 469.1 W for the CPS, CPIE and M–M simulations, respectively. The M–M model takes more physiological phenomena into consideration compared to the CPIE model and, therefore, contributes to an optimised pacing strategy that is more realistic. Therefore, the M–M model might be more suitable for future studies on optimal pacing strategy, despite the relatively slower finishing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kennelly AE (1906) An approximate law of fatigue in the speeds of racing animals. Proc Am Acad Arts Sci 42:275–331

    Article  Google Scholar 

  2. Keller JB (1974) Optimal velocity in a race. Am Math Mon 81:474–480. doi:10.2307/2318584

    Article  MATH  Google Scholar 

  3. Ariyoshi M, Yamaji K, Shephard RJ (1979) Influence of running pace upon performance: effects upon treadmill endurance time and oxygen cost. Eur J Appl Physiol Occup Physiol 41:83–91

    Article  Google Scholar 

  4. Billat V, Hamard L, Koralsztein JP, Morton RH (2009) Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol 107:478–487. doi:10.1152/japplphysiol.91296.2008

    Article  Google Scholar 

  5. Swain DP (1997) A model for optimizing cycling performance by varying power on hills and in wind. Med Sci Sport Exer 29:1104–1108. doi:10.1097/00005768-199708000-00017

    Article  Google Scholar 

  6. Atkinson G, Brunskill A (2000) Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics 43:1449–1460. doi:10.1080/001401300750003899

    Article  Google Scholar 

  7. de Koning JJ, Bobbert MF, Foster C (1999) Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport 2:266–277. doi:10.1016/S1440-2440(99)80178-9

    Article  Google Scholar 

  8. Gordon S (2005) Optimising distribution of power during a cycling time trial. Sports Eng 8:81–90. doi:10.1007/bf02844006

    Article  Google Scholar 

  9. Cangley P, Passfield L, Carter H, Bailey M (2011) The effect of variable gradients on pacing in cycling time-trials. Int J Sports Med 32:132–136. doi:10.1055/s-0030-1268440

    Article  Google Scholar 

  10. Dahmen T (2012) Optimization of pacing strategies for cycling time trials using a smooth 6-parameter endurance model. In: Pre-olympic congress on sports science and computer science in sport (IACSS2012). IACSS Press, Liverpool

  11. Dahmen T, Saupe D, Wolf S (2012) Applications of mathematical models of road cycling. In: Vienna international conference on mathematical modelling (MATHMOD), Vienna, Austria

  12. Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–354. doi:10.1007/s00421-005-0088-2

    Article  Google Scholar 

  13. Dahmen T (2012) Computing a field of optimal pacing strategies for cycling time trials. In: Symposium der dvs-Sektion Sportinformatik, Konstanz, Germany

  14. Morton RH (1986) A three component model of human bioenergetics. J Math Biol 24:451–466

    Article  MATH  Google Scholar 

  15. Morton RH (1990) Modelling human power and endurance. J Math Biol 28:49–64

    Article  MATH  MathSciNet  Google Scholar 

  16. Morton RH, Billat LV (2004) The critical power model for intermittent exercise. Eur J Appl Physiol 91:303–307. doi:10.1007/s00421-003-0987-z

    Article  Google Scholar 

  17. Meriam JL, Kraige LG (2013) Engineering mechanics dynamics SI version, 7th edn. Wiley, Singapore

    Google Scholar 

  18. Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR (1998) Validation of a mathematical model for road cycling power. J Appl Biomech 14:276–291

    Google Scholar 

  19. Meriam JL, Kraige LG (2013) Engineering mechanics statics SI version, 7th edn. Wiley, Singapore

    Google Scholar 

  20. Dahn K, Mai L, Poland J, Jenkins C (1991) Frictional resistance in bicycle wheel bearings. Cycl Sci 3:28–32

    Google Scholar 

  21. Sundström D, Carlsson P, Ståhl F, Tinnsten M (2013) Numerical optimization of pacing strategy in cross-country skiing. Struct Multidisc Optim 47:943–950. doi:10.1007/s00158-012-0856-7

    Article  Google Scholar 

  22. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Meth Eng 24:359–373. doi:10.1002/nme.1620240207

    Article  MATH  MathSciNet  Google Scholar 

  23. Svanberg K (1993) The method of moving asymptotes (MMA) with some extensions. Optim Large Struct Syst 1(231):555–566

    Article  MathSciNet  Google Scholar 

  24. Sundström D, Carlsson P, Tinnsten M (2013) On optimization of pacing strategy in road cycling. In: 6th Asia-Pacific congress on sports technology (APCST), Elsevier, Hong Kong

  25. Minetti AE (2011) Bioenergetics and biomechanics of cycling: the role of ‘internal work’. Eur J Appl Physiol 111:323–329. doi:10.1007/s00421-010-1434-6

    Article  Google Scholar 

  26. McArdle WD, Katch FI, Katch VL (2010) Exercise physiology: nutrition, energy, and human performance, 7th edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  27. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sport Exer 24:782–788

    Google Scholar 

  28. Lucia A, Juan AFS, Montilla M, Canete S, Santalla A, Earnest C, Perez M (2004) In professional road cyclists, low pedaling cadences are less efficient. Med Sci Sport Exer 36:1048–1054. doi:10.1249/01.Mss.0000128249.10305.8a

    Article  Google Scholar 

  29. Del Coso J, Mora-Rodriguez R (2006) Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl Physiol Nutr Metab: Physiologie Appliquee Nutrition Et Metabolisme 31:186–189. doi:10.1139/H05-026

    Article  Google Scholar 

  30. Brickley G, Dekerle J, Hammond AJ, Pringle J, Carter H (2007) Assessment of maximal aerobic power and critical power in a single 90-s isokinetic all-out cycling test. Int J Sports Med 28:414–419. doi:10.1055/s-2006-924513

    Article  Google Scholar 

  31. Margaria R, Margaria R (1976) Biomechanics and energetics of muscular exercise. Clarendon Press, Oxford

  32. Heil DP (2001) Body mass scaling of projected frontal area in competitive cyclists. Eur J Appl Physiol 85:358–366

    Article  Google Scholar 

  33. Heil DP (2002) Body mass scaling of frontal area in competitive cyclists not using aero-handlebars. Eur J Appl Physiol 87:520–528. doi:10.1007/s00421-002-0662-9

    Article  Google Scholar 

  34. Grappe F, Candau R, Barbier B, Hoffman MD, Belli A, Rouillon JD (1999) Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance. Ergonomics 42:1361–1371. doi:10.1080/001401399185009

    Article  Google Scholar 

  35. Jones AM, Wilkerson DP, Vanhatalo A, Burnley M (2008) Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports 18:615–626. doi:10.1111/j.1600-0838.2007.00725.x

    Article  Google Scholar 

  36. Hill DW, Ferguson CS (1999) A physiological description of critical velocity. Eur J Appl Physiol Occup Physiol 79:290–293. doi:10.1007/s004210050509

    Article  Google Scholar 

  37. Morton RH (2009) A new modelling approach demonstrating the inability to make up for lost time in endurance running events. Ima J Manag Math 20:109–120. doi:10.1093/imaman/dpn022

    Article  MathSciNet  Google Scholar 

  38. Morton RH (1996) A 3-parameter critical power model. Ergonomics 39:611–619. doi:10.1080/00140139608964484

    Article  Google Scholar 

  39. St Clair Gibson A, Noakes TD (2004) Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 38:797–806. doi:10.1136/bjsm.2003.009852

    Article  Google Scholar 

  40. Noakes TD, Gibson AS, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Brit J Sport Med 39:120–124. doi:10.1136/bjsm.2003.010330

    Article  Google Scholar 

  41. Skiba PF, Chidnok W, Vanhatalo A, Jones AM (2012) Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc 44:1526–1532. doi:10.1249/MSS.0b013e3182517a80

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund of the European Union.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sundström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundström, D., Carlsson, P. & Tinnsten, M. Comparing bioenergetic models for the optimisation of pacing strategy in road cycling. Sports Eng 17, 207–215 (2014). https://doi.org/10.1007/s12283-014-0156-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-014-0156-0

Keywords

Navigation