Skip to main content
Log in

Technical possibilities for optimising the ski-binding-boot functional unit to reduce knee injuries in recreational alpine skiing

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

This review study focuses on knee injuries in recreational alpine skiing. The objectives of this study were (1) to provide selected knowledge derived from current and past knee injury epidemiology; (2) to outline the most important knee injury mechanisms; and (3) to review and discuss how modifications of the skiing equipment might alleviate the risk of knee injuries. This review represents the essence of a comprehensive research report and considers the content of more than 230 scientific papers, further “grey literature”, patents, international standards and other publications. Knee injuries are the most frequent injuries in alpine skiing and their incidence rate remained high despite a decline of the incidence of other skiing injuries in recent years. Women have a higher knee injury risk, but age and tiredness appear not to be significant factors. Apart from the commonly described injury mechanisms “phantom foot” and “boot-induced anterior drawer” other more sophisticated injury categorisations are given. The ski radius, the ski length and the standing height on the ski may be relevant ski parameters. For the binding, the release mechanisms in different mechanical degrees of freedom, the impact tolerance and the maintenance frequency are discussed. In the ski boot, the height of the upper, the boot liner, the shaft stiffness, and the position on the ski may play a role. The biggest challenge, but probably also the biggest opportunity for a reduction of knee injury rates seems to be the development of a mechatronic binding. The current strategies to develop these types of bindings are explained and illustrated by one example. Some of the possible parameters which may be essential for the necessary control algorithms are described. Finally, considerations regarding the strategic and operational implication of the analysed technical measures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schulz, David. Unfälle und Verletzungen im alpinen Skisport: Zahlen und Trends 2010/2011. 2011. Düsseldorf, Auswertungsstelle für Skiunfälle, ARAG Sportversicherung

  2. Johnson RJ, Ettlinger CF, Shealy JE (2008) Update on injury trends in alpine skiing. In: Johnson RJ, Shealy JE, Langran M (eds) Skiing trauma and safety: seventeenth volume. ASTM International, Philadelphia, pp 11–22

    Google Scholar 

  3. Michel FI, Brügger O (2009) Ausschreibung: Literaturstudium––Alpiner Skisport: Kniegelenksverletzungen beim alpinen Skifahren im Zusammenhang mit der Präventionswirkung des Schuh-Bindung-Ski-Komplexes. bfu: Beratungsstelle für Unfallverhütung. Unpublished Work. 15-2-2009

  4. Johnson RJ, Ettlinger CF (2005) Injury trends and risk factors involving ACL injuries in alpine skiing. Keynote Lecture during the 16th International Symposium on Ski Trauma and Skiing Safety

  5. Ruedl G, Webhofer M, Linortner I et al (2011) ACL injury mechanisms and related factors in male and female carving skiers: a retrospective study. Int J Sports Med 32:801–806

    Article  Google Scholar 

  6. Kim S, Endres NK, Johnson RJ, Ettlinger CF, Shealy JE (2012) Snowboarding injuries: trends over time and comparisons with alpine skiing injuries. Am J Sports Med 40:770–776

    Article  Google Scholar 

  7. Natri A, Beynnon BD, Ettlinger CF, Johnson RJ, Shealy JE (1999) Alpine ski bindings and injuries: current findings. Sports Med 28:35–48

    Article  Google Scholar 

  8. Finch CF, Kelsall HL (1998) The effectiveness of ski bindings and their professional adjustment for preventing alpine skiing injuries. Sports Med 25:407–416

    Article  Google Scholar 

  9. Shealy JE, Ettlinger CF, Johnson RJ (2003) What do we know about ski injury research that relates binding function to knee and lower leg injuries. In: Johnson RJ, Lamont MK, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fourteenth volume. ASTM International, Philadelphia, pp 36–52

    Chapter  Google Scholar 

  10. Bere T, Florenes TW, Krosshaug T, Nordsletten L, Bahr R (2011) Events leading to anterior cruciate ligament injury in world cup alpine skiing: a systematic video analysis of 20 cases. Br J Sports Med 45:1294–1302

    Article  Google Scholar 

  11. Bere T, Florenes TW, Krosshaug T et al (2013) A systematic video analysis of 69 injury cases in World Cup alpine skiing. Scand J Med Sci Sports. doi:10.1111/sms.12038

  12. Bere T, Mok KM, Koga H, Krosshaug T, Nordsletten L, Bahr R (2013) Kinematics of anterior cruciate ligament ruptures in world cup alpine skiing: two case reports of the slip–catch mechanism. Am J Sports Med 41:1067–1073

    Article  Google Scholar 

  13. Bere T, Bahr R (2013) FIS injury surveillance system world cup alpine skiing 2006–2011. Internet FIS––International Ski Federation. 17-4-2013

  14. Florenes TW, Bere T, Nordsletten L, Heir S, Bahr R (2009) Injuries among male and female world cup alpine skiers. Br J Sports Med 43:973–978

    Article  Google Scholar 

  15. Florenes TW, Nordsletten L, Heir S, Bahr R (2010) Injuries among world cup ski and snowboard athletes. Scand J Med Sci Sports 1–9

  16. Florenes TW, Bere T, Bahr R (2013) FIS injury surveillance system 2006–2009. Internet FIS––International Ski Federation. 17-4-2013

  17. Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R (2007) Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 17:508–519

    Article  Google Scholar 

  18. Spörri J, Kröll J, Blake O, Amesberger G, Müller E (2013) A qualitative approach to determine key injury risk factors in alpine ski racing. Internet FIS––International Ski Federation. 17-4-2013

  19. Senner Veit Michel FI, Nusser M, Lehner S, Brügger O (2013) Technische Möglichkeiten zur Optimierung der Ski-Bindung-Schuh-Funktionseinheit zur Reduzierung von Kniegelenksverletzungen beim Alpinen Skilauf: Eine Expertise zum gegenwärtigen Stand der Technik und deren Entwicklungspotenzial. bfu-Report [in Press]. Bern, bfu––Beratungsstelle für Unfallverhütung

  20. FPO (2013)Free Patent Online. Internet. 21-11-2012

  21. Johnson RJ, Shealy JE, Langran M (2009) Skiing trauma and safety: seventeenth volume. ASTM International, Philadelphia

  22. Johnson RJ, Shealy JE, Senner V (2011) Skiing trauma and safety: eighteenth volume STP 1525. ASTM International, Philadelphia

    Book  Google Scholar 

  23. Bambach S, Kelm J, Hopp S (2008) Skisport: aktuelle Entwicklung––Verletzungsmuster––Prävention. Sportverletz Sportschaden 22:25–30

    Article  Google Scholar 

  24. Ekeland A, Rødven A (2011) Skiing and boarding injuries on Norwegian slopes during two winter seasons. In: Johnson RJ, Shealy JE, Senner V (eds) Skiing trauma and safety: eighteenth volume. ASTM International, Philadelphia, pp 139–149

    Chapter  Google Scholar 

  25. Burtscher M, Sommersacher R, Ruedl G, Nachbauer W (2008) Potential risk factors for knee injuries in alpine skiers. J ASTM Int 6:73–76

    Google Scholar 

  26. Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501

    Article  Google Scholar 

  27. Greenwald RM, Toelcke T (1997) Gender differences in alpine skiing injuries: a profile of the knee-injured skier. In: Johnson RJ, Mote CD, Ekeland A (eds) Skiing trauma and safety: eleventh volume. ASTM International, Philadelphia, pp 111–121

    Chapter  Google Scholar 

  28. Jais R (2005) Verletzungen im alpinen Skisport unter Berücksichtigung der Entwicklung in der Skitechnologie. Doctoral thesis, Technische Universität

  29. Ruedl G, Linortner I, Schranz A et al (2009) Distribution of injury mechanisms and related factors in ACL-injured female carving skiers. Knee Surg Sports Traumatol Arthrosc 17:1393–1398

    Article  Google Scholar 

  30. Hewett TE (2000) Neuromuscular and hormonal factors associated with knee injuries in female athletes: strategies for intervention. Sports Med 29:313–327

    Article  Google Scholar 

  31. Beynnon BD, Johnson RJ, Braun S et al (2006) The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case-control study of recreational alpine skiers. Am J Sports Med 34:757–764

    Article  Google Scholar 

  32. Ruedl G, Schranz A, Fink C, Pocecco E, Nachbauer W, Burtscher M (2011) Are ACL injuries related to perceived fatigue in female skiers? J ASTM Int 7:119–129

    Google Scholar 

  33. Shealy JE, Ettlinger CF, Johnson RJ (2011) Aging trends in alpine skiing. J ASTM Int 7: 130–138

    Google Scholar 

  34. Ekeland A (1995) The knees are in danger in skiing. Scand J Med Sci Sports 5:61–63

    Article  Google Scholar 

  35. Laporte JD, Binet MH, Fenet N, Constans D, Joubert P (2008) Ski bindings and lower leg injuries, A case control study in Flaine, 2006. J ASTM Int 6:77–88

    Google Scholar 

  36. Merkur A, Whelan KM, Kuah D, Choo P (2003) The effect of ski shape on injury occurence in downhill skiing. In: Johnson RJ, Lamont MK, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fourteenth volume. ASTM International, Philadelphia, pp 129–139

    Chapter  Google Scholar 

  37. Röhrl S (1995) Eine kritische Analyse der bestehenden Einstellrichtlinien für Skibindungen durch Statistik, Theorie und Experiment. Doctoral thesis, München, Ludwig-Maximilian-Universität

  38. Ettlinger CF, Johnson RJ, Shealy JE (1995) A method to help reduce the risk of serious knee sprains incurred in alpine skiing. Am J Sports Med 23:531–537

    Article  Google Scholar 

  39. Howe J, Johnson RJ (1985) Knee injuries in skiing. Orthop Clin North Am 16:303–314

    Google Scholar 

  40. Johnson RL, Ettlinger CF, Shealy JE (1997) Skier injury trends: 1972–1994. In: Johnson RJ, Mote J, Ekeland A (eds) Skiing trauma and safety: eleventh volume, ASTM STP 1289. American Society for Testing and Materials, West Conshohocken, pp 37–48

    Chapter  Google Scholar 

  41. Johnson RJ, Renström P (1997) Verletzungen und Überlastungsschäden im alpinen Skilauf. In: Renström PAFH, Rost K (eds) Sportverletzungen und Überlastungsschäden: Prävention, Therapie, Rehabilitation. Deutscher Ärzte-Verlag, Köln, pp 579–601

    Google Scholar 

  42. Pressman A, Johnson DH (2003) A review of ski injuries resulting in combined injury to the anterior cruciate ligament and medial collateral ligaments. Arthroscopy 19:194–202

    Article  Google Scholar 

  43. Bahr R, Krosshaug T (2005) Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med 39:324–329

    Article  Google Scholar 

  44. Krosshaug T, Bahr R (2005) A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J Biomech 38:919–929

    Article  Google Scholar 

  45. Freudiger S, Friedrich NF (2000) Critical load cases for knee ligaments at skiing––an engineering approach. In: Johnson RJ, Zucco P, Shealy JE (eds) Skiing trauma and safety: thirteenth volume. ASTM International, Philadelphia, pp 160–174

    Chapter  Google Scholar 

  46. MacDermid KD (2005) The effect of sidecut radius on the dynamics of alpine skiing. Elect J Class Mech Relat 12:1–8

    Google Scholar 

  47. Köhne G, Kusche H, Schaller C, Gutsfeld P (2007) Skiunfälle––Veränderungen seit Einführung des Carvingski. Sportorthopädie Sporttraumatologie 23:63–67

    Google Scholar 

  48. Senner V, Lehner S, Böhm H (2009) Equipment development and research for more performance and safety. In: Müller E, Lindinger S, Stöggl T (eds) Science and skiing IV. Meyer & Meyer Sport (UK, Ltd.), Maidenhead, pp 110–133

    Google Scholar 

  49. Greenwald RM, Nesshoever M, Boynton MD (2000) Ski injury epidemiology: a short-term epidemiology study of injuries with skiboards. In: Johnson RJ, Zucco P, Shealy JE (eds) Skiing trauma and safety: thirteenth volume. ASTM International, Philadelphia, pp 119–126

    Chapter  Google Scholar 

  50. Greenwald RM, Nesshoever M, Boynton MD (2003) Ski injury epidemiology: a 2 years epidemiology study of injuries with skiboards. In: Johnson RJ, Lamont MK, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fourteenth volume. ASTM International, Philadelphia, pp 113–120

    Chapter  Google Scholar 

  51. Greenwald RM, Laporte JD (2008) Effect of age and experience on lower leg fractures in alpine sports. J ASTM Int 5:3–10

    Google Scholar 

  52. Johnson RJ, Ettlinger CF, Shealy JE (2003) Lower extremity injuries involving traditional alpine skis versus short skis with non-release bindings. In: Johnson RJ, Lamont MK, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fourteenth volume. ASTM International, Philadelphia, pp 105–112

    Chapter  Google Scholar 

  53. Langran M (2005) Skiboard injuries: a three-year comparison with alpine skiing. In: Johnson RJ, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fifteenth volume. ASTM International, Philadelphia, pp 49–58

    Chapter  Google Scholar 

  54. Shealy JE, Ettlinger CF, Johnson RJ (2000) A two year study of skiboards. In: Johnson RJ, Zucco P, Shealy JE (eds) Skiing trauma and safety: thirteenth volume. ASTM International, Philadelphia, pp 127–131

    Chapter  Google Scholar 

  55. Müller E, Schwameder H (2003) Biomechanical aspects of new techniques in alpine skiing and ski-jumping. J Sports Sci 21:679–692

    Article  Google Scholar 

  56. Vogel A (1997) Der Alpin-Ski im Wandel der Zeit: Universalski, Carving-Ski. J Orthop Trauma 11:197–202

    Google Scholar 

  57. Burtscher M, Nachbauer W (1999) Injury risk of austrian skiers in comparison of the injury pattern of traditional and carving skiers (german). In: Österreichisches Kuratorium für Alpine Sicherheit (eds) Sicherheit im Bergland - Jahrbuch '99. Innsbruck, pp 107–115

  58. Senner V, Hinterlang M (2012) Testkonstruktion Skimagazin Supertest 2012––Stand 13. February 2012. Meinerzhagen, Brinkmann Henrich Medien GmbH

  59. Tausch F (2012) Ski-supertest 12/13––Unter die Lupe genommen. Skimagazin 40–70

  60. Vogt W (1998) Krafteinwirkungen auf das Kniegelenk beim alpinen Skilauf in Abhängigkeit von Skiausrüstung, Skitechnik und Skitaktik. Doctoral thesis, Technische Universität

  61. Ettlinger CF, Dodge D, Johnson RJ, Shealy JE, Sargent M (2010) Retention requirements for alpine ski bindings. J ASTM Int 7:3–31

    Article  Google Scholar 

  62. Senner V, Lehner S, Schaff P (2003) Release binding for skiboards? In: Johnson RJ, Lamont MK, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fourteenth volume. ASTM International, Philadelphia, pp 24–35

    Chapter  Google Scholar 

  63. Bally A (1996) Release level for backward release. In: Mote CD Jr, Johnson RJ, Hauser W, Schaff P (eds) Skiing trauma and safety. American Society for Testing and Materials, West Conshhocken, pp 354–360

    Chapter  Google Scholar 

  64. Senner V, Schaff P, Hauser W (1994) Einflüsse des Ski-Schuh-Bindungssystems auf die Belastung und Kinematik der unteren Extremität beim Rückwärtssturz im alpinen Skilauf. Deutsche Zeitschrift für Sportmedizin 11/12:428–438

    Google Scholar 

  65. Senner V, Schaff P, Hauser W (1996) Influences of ski boot binding system on load reduction and kinematics of lower leg during backward fall: dynamic simulation using an anthropometric dummy. In: Mote CD (ed) Skiing trauma and safety: tenth volume, ASTM STP 1266. American Society for Testing and Materials, West Conshohocken, pp 206–218

    Chapter  Google Scholar 

  66. St-Onge N, Chevalier Y, Hagemeister N, van de Putte M, Guise JD (2004) Effect of ski binding parameters on knee biomechanics: a three-dimensional computational study.  Med Sci Sports Exerc 36:1218–1225

    Article  Google Scholar 

  67. KneeBinding (2011) Ski Better Ski Safer. Internet. KneeBinding. 13-12-2012

  68. Springer-Miller J (2012) White Paper: Knee Binding––Technical and background information. KneeBinding Inc. 13-12-2012

  69. Freudiger S, Vogt W, Wirz D (2010) Relative motion of ACL insertion points in vivo: a case study, including skiing maneuvers. J ASTM Int 7:159–172

    Article  Google Scholar 

  70. Lehner S (2008) Entwicklung und Validierung biomechanischer Computermodelle und deren Einsatz in der Sportwissenschaft. Doctoral thesis, Universität Koblenz

  71. Janko T (2003) Dynamisches Verhalten des Fersenelements alpiner Skibindungen in Experiment und Simulation. Diploma thesis, Technische Universität München

  72. Senner V, Lehner S (2007) Skiing equipment: what is done towards more safety, performance and ergonomics? In: Fuss FK, Subic A, Ujihashi S (eds) The impact of technology on sport II. Taylor and Francis Group, London, pp 803–811

    Google Scholar 

  73. Merino JF, Laporte JD, Joubert P, Lower leg injuries and fall mechanisms during alpine skiing practice. In: Langran M (ed) Book of abstracts of the 17th international congress on ski trauma and skiing safety. Aviemore, Scotland

  74. Nachbauer W (2004) Effects of ski stiffness on ski performance. In: Hubbard M, Metha RD, Pallis JM (eds) The engineering of sport 5. International Sports Engineering Association, Sheffield, pp 472–478

    Google Scholar 

  75. Burtscher M, Gatterer H, Flatz M et al (2008) Effects of modern ski equipment on the overall injury rate and the pattern of injury location in alpine skiing. Clin J Sport Med 18:355–357

    Article  Google Scholar 

  76. Ettlinger CF, Johnson RJ, Shealy JE (2006) Functional and release characteristics of alpine ski equipment. J ASTM Int 3:65–74

    Article  Google Scholar 

  77. Ruedl G (2010) Aktuelle Bindungseinstellungen auf der Skipiste in der Wintersaison 2009/2010 in Serfaus/Tirol. Österreichischer Skiverband and Institut für Sportwissenschaft Innsbruck. http://www.oesv.at/media/media_breitensport/Auswertung-Bindungsmessung-2010.pdf. 2010

  78. Ekeland A, Sulheim S, Rodven A (2005) Injury rates and injury types in alpine skiing, telemarking, and snowboarding. J ASTM Int 2:31–39

    Article  Google Scholar 

  79. Shealy JE, Ettlinger CF (1999) Signal detection theory: a model for evaluation release/retention criteria in alpine ski-binding-boot systems. In: Johnson RJ (ed) Skiing trauma and safety: twelfth volume. ASTM International, Philadelphia, pp 120–131

    Chapter  Google Scholar 

  80. Shealy JE, Ettlinger CF, Johnson RJ (2005) Using signal detection theory as a model to evaluate release/retention criteria in alpine skiing. In: Johnson RJ, Shealy JE, Ahlbäumer G (eds) Skiing trauma and safety: fifteenth volume. ASTM International, Philadelphia, pp 1–12

    Chapter  Google Scholar 

  81. Asang E (1976) Experimental biomechanics of the human leg. A basis for interpreting typical skiing injury mechanisms. Orthop Clin North Am 7:63–73

    Google Scholar 

  82. Crawford RP, Mote CD (1997) Ski binding minimum retention requirements. In: Johnson RJ, Mote CD, Ekeland A (eds) Skiing trauma and safety: eleventh volume. ASTM International, Philadelphia, pp 93–108

    Chapter  Google Scholar 

  83. Crawford RP, Mote CD Jr (1996) Fuzzy logic control of bio-adaptive ski binding release. In: Mote CD Jr, Johnson RJ, Hauser W, Schaff P (eds) Skiing trauma and safety. American Society for Testing and Materials, West Conshhocken, pp 323–328

    Chapter  Google Scholar 

  84. Halsted L, Hull ML (1987) A small, low power microcomputer-based controller for snow ski bindings. In: Mote CD Jr, Johnson RJ (eds) Skiing trauma and safety: sixth international symposium (STP 938). ASTM International, Philadelphia, pp 235–248

    Chapter  Google Scholar 

  85. Hauser W, Asang E (1982) New IAS adjustment specification 80 based on tibia method. In: Hauser W, Karlsson J, Magi M (eds) Skiing trauma and safety IV. TÜV-Bayern, München, pp 79–85

    Google Scholar 

  86. MacGregor D, Hull ML (1985) A microcomputer controlled snow ski binding system––II. Release decision theories. J Biomech 18:267–275

    Article  Google Scholar 

  87. MacGregor D, Hull ML, Dorius LK (1985) A microcomputer controlled snow ski binding system I. Instrumentation and field evaluation. J Biomech 18:255–265

    Article  Google Scholar 

  88. Neptune R, Hull ML (1992) A new electromechanical ski binding with release sensitivity to torsion and bending moments transmitted by the leg. Int J Sport Biomech 8:331–349

    Google Scholar 

  89. Neptune R, Hull ML (1996) A new electromechanical ski binding with release sensitivity to torsion and bending moments transmitted by the leg. In: Mote CD Jr, Johnson RJ, Hauser W, Schaff P (eds) Skiing trauma and safety. American Society for Testing and Materials, West Conshhocken, pp 339–353

    Chapter  Google Scholar 

  90. Quinn T, Mote C (1990) Optimal design of an uncoupled six degree of freedom dynamometer. Exp Mech 30:40–48

    Article  Google Scholar 

  91. Quinn TP, Mote CD (1993) Prediction of the loading along the leg during snow skiing. In: Johnson RJ, Mote CD, Zelcer J (eds) Skiing trauma and safety: ninth international symposium. ASTM International, Philadelphia, pp 128–149

    Chapter  Google Scholar 

  92. Storandt R (1980) Systematische Untersuchung zur Verbesserung des Verletzungsschutzes im alpinen Skilauf und Konzeption eines neuen Skibindungssystems. Doctoral thesis, Darmstadt, Technische Hochschule Darmstadt, Fachbereich Maschinenbau

  93. Wittmann G (1973) Biomechanische Untersuchungen zum Verletzungsschutz im Alpinen Skisport. Doctoral thesis, Technische Universität, München

  94. Wunderly G, Hull ML (1987) A new electromechanical binding/dynamometer for actively controlled snow ski binding system. In: Mote CD Jr, Johnson RJ (eds) Skiing trauma and safety: sixth international symposium (STP 938). ASTM International, Philadelphia, pp 249–259

    Chapter  Google Scholar 

  95. Wunderly GS, Hull ML (1989) A mechanical alpine ski binding with programmable release. In: Johnson RJ, Mote CD, Binet MH (eds) Skiing trauma and safety: seventh international symposium. ASTM International, Philadelphia, pp 199–209

    Chapter  Google Scholar 

  96. Yee AG (1992) Regression models of forces and moments during skiing. Doctoral thesis, University of California, Berkley

  97. Yee AG, Mote CD (1993) Skiing forces and moments at the knee and boot top: boot stiffness effects and modeling. In: Johnson RJ, Mote CD, Zelcer J (eds) Skiing trauma and safety: ninth international symposium. ASTM International, Philadelphia, pp 111–127

    Chapter  Google Scholar 

  98. Damiani L, Merino JF, Gagniere P, Greenwald RM (2011) 6 years of on snow binding measurements in alpine skiing. In: Scher I, Greenwald R (eds) Book of abstracts of the 19th international congress on ski trauma and skiing safety. Keystone, Colorado

    Google Scholar 

  99. Damiani L, Merino JF (2011) Methods for on snow measurements in alpine skiing. In: Scher I, Greenwald R (eds) Book of abstracts of the 19th international congress on ski trauma and skiing safety. Keystone, Colorado

    Google Scholar 

  100. Greenwald RM, Chu JJ, Beckwith JG, Merino JF, Mansuy M (2009) On-snow evaluation of novel ski binding release mechanism. In: Senner V, Fastenbauer V, Böhm H (eds) ISSS 2009 Book of Abstracts. Technische Universität München, Department of Sport Equipment and Materials Germany, München, p 37

    Google Scholar 

  101. Merino JF, Damiani L, Bonnet S, Francoise H, Cado G (2009) Three years on snow binding measurements in alpine skiing. In: Senner V, Fastenbauer V, Böhm H (eds) ISSS 2009 Book of Abstracts. Technische Universität München, Department of Sport Equipment and Materials, München, p 36

    Google Scholar 

  102. Ebert C (2010) Beschreibung und Bewertung der Funktionalität von Sportprodukten. Doctoral thesis, Technische Universität, München

  103. Tausend C (2001) Innovationen im Skirennsport. Diploma thesis, Ludwig-Maximilian-Universität, München

  104. Senner V (2010) On the way to new records. Kunststoffe international 88–93

  105. Gläser H (1997) Skisport und Skiunfälle. Zahlen und Trends der Saison 1995/1996. Düsseldorf, Auswertestelle für Skiunfälle, ARAG Sportversicherung

  106. Johnson RJ, Ettlinger CF, Shealy JF, Meader C (1997) Impact of super sidecut skis on the epidemiology of skiing injuries. Sportverletz Sportschaden 11:150–152

    Google Scholar 

  107. Spiecker H (1983) Sportschuhe––Ein Ratgeber für aktive Sportler, Trainer, Lehrer, Eltern und den Fachhandel. Perimed Fachbuch-Verlagsgesellschaft GmbH, Erlangen

    Google Scholar 

  108. Ebert C (2012) Back Backe Schuhchen. DSV aktiv––Ski & Sportmagazin 29–32

  109. Teudt K (2012) Race-Skischuhe: Öfter mal was Neues. Skimagazin 96–99

  110. Chaudhari AM, Andriacchi TP (2006) The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J Biomech 39:330–338

    Article  Google Scholar 

  111. Koga H, Nakamae A, Shima Y et al (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in ten injury situations from female team handball and basketball. Am J Sports Med 38:2218–2225

    Article  Google Scholar 

  112. McLean SG, Huang X, Su A, van den Bogert AJ (2004) Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech 19:828–838

    Article  Google Scholar 

  113. Shin CS, Chaudhari AM, Andriacchi TP (2009) The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J Biomech 42:280–285

    Article  Google Scholar 

  114. Böhm H, Senner V (2008) Effect of ski boot settings on tibio-femoral abduction and rotation during standing and simulated skiing. J Biomech 41:498–505

    Article  Google Scholar 

  115. Internationaler Arbeitskreis für Sicherheit im Skisport (IAS). (1980) IAS Richtlinie 150––Skischuhe für Erwachsene. München, TÜV

  116. Bonjour F, Delouche G (1989) Problems encountered in flex measurements on alpine ski boots. In: Johnson RJ, Mote CD, Binet MH (eds) Skiing trauma and safety: seventh international symposium. ASTM International, Philadelphia, pp 167–177

    Chapter  Google Scholar 

  117. Shealy JE, Miller DA (1989) Dorsiflexion of the human ankle as it relates to ski boot design in downhill skiing. In: Johnson RJ, Mote CD Jr, Binet MH (eds) Skiing trauma and safety: seventh international symposium ASTM STP 1022. ASTM International, Philadelphia, pp 146–152

    Chapter  Google Scholar 

  118. Walkhoff K, Baumann CW (1987) Alpine ski boot hysteresis characteristics interpreted for skier target groups within the current standards. In: Mote CD Jr, Johnson RJ (eds) Skiing trauma and safety: sixth international symposium STP 938. ASTM International, Philadelphia, pp 127–144

    Chapter  Google Scholar 

  119. Senner V (2001) Biomechanische Methoden am Beispiel der Sportgeräteentwicklung. Doctoral thesis, Technische Universität,  München

  120. Bally A, Boreiko M, Bonjour F, Brown CA (1989) Modeling forces on the anterior cruciate knee ligament During bachward falls while skiing. In: Johnson RJ, Mote CD, Binet MH (eds) Skiing trauma and safety: seventh international symposium. ASTM International, Philadelphia, pp 267–276

    Chapter  Google Scholar 

  121. Webster JD, Brown CA (1996) Computer simulation of the loads on the ACL during backward falls based on an open kinematic chain model. In: Mote CD Jr, Johnson RJ, Hauser W, Schaff P (eds) Skiing trauma and safety. American Society for Testing and Materials, West Conshhocken, pp 245–269

    Google Scholar 

  122. Senner V (2010) Snow sports equipment: current developments for improved protection an prevention. In: Müller E, Lindinger S, Stöggl T, Pfusterschmied J (eds) Science and skiing V: book of abstracts. University of Salzburg, Department of Sport Science and Kinesiology, Salzburg, p 7

    Google Scholar 

  123. Krosshaug T, Nakamae A, Boden BP et al (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359–367

    Article  Google Scholar 

  124. Myklebust G, Steffen K (2009) Prevention of ACL injuries: how, when and who? Knee Surg Sports Traumatol Arthrosc 17:857–858

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Dr. Florian Reim who died of clinical complications following an ACL injury while skiing. Our hope is that this paper will help to improve safety in this sport we so much love.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank I. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senner, V., Michel, F.I., Lehner, S. et al. Technical possibilities for optimising the ski-binding-boot functional unit to reduce knee injuries in recreational alpine skiing. Sports Eng 16, 211–228 (2013). https://doi.org/10.1007/s12283-013-0138-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-013-0138-7

Keywords

Navigation