Skip to main content

Advertisement

Log in

p21Waf1/Cip1: its paradoxical effect in the regulation of breast cancer

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

p21Waf1/Cip1, the cyclin-dependent kinase (CDK) inhibitor belonging to the KIP/CIP family, was initially regarded as a tumor suppressor protein because it was recognized as the chief mediator of p53-dependent cell cycle arrest elicited by DNA damage. Conversely, it has been proposed that p21Waf1/Cip1 may also function as an oncogene because it can inhibit apoptosis. Thus, p21Waf1/Cip1 is regarded as a protein with a dual behavior, as its expression might cause potential benefits or dangerous effects in breast cancer. Consequently, careful planning is required in targeting p21Waf1/Cip1 expression for therapy of breast cancer patients. This review illustrates the discovery and mechanisms of induction of p21Waf1/Cip1. Then, we focus on elucidating the paradoxical effect of p21Waf1/Cip1 expression on human breast carcinogenesis and explaining how the subcellular localization (nuclear or cytoplasmic) of p21Waf1/Cip1 has an impact on both determining its fate as either cell-growth inhibitor or antiapoptotic molecule and, its effect on clinicopathological factors and prognosis of breast cancer patients. Moreover, we explore how the pattern of the p21Waf1/Cip1 could affect the responsiveness of human breast cancer to chemotherapy. Furthermore, the pharmacological approaches to target p21Waf1/Cip1 expression for therapy of breast cancer are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem. 2006;97(2):261–74.

    Article  PubMed  CAS  Google Scholar 

  2. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–93.

    Article  PubMed  CAS  Google Scholar 

  3. Gomez V, Hergovich A. Cell-cycle control and DNA-damage signaling. In: Kovalchuk I, Kovalchuk O, editors. Genome stability from virus to human application (translational epigenetics series), chap 14. 1st ed. London: Academic Press; 2016. P. 227–42.

    Google Scholar 

  4. Jiang M, Shao ZM, Wu J, Lu JS, Yu LM, Yuan JD, et al. p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J cancer. 1997;74(5):529–34.

    Article  PubMed  CAS  Google Scholar 

  5. Pellikainen MJ, Pekola TT, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, et al. p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol. 2003;56(3):214–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Göhring UJ, Bersch A, Becker M, Neuhaus W, Schöndorf T. p21waf correlates with DNA replication but not with prognosis in invasive breast cancer. J Clin Pathol. 2001;54(11):866–70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wakasugi E, Kobayashi T, Tamaki Y, Ito Y, Miyashiro I, Komoike Y, et al. p21 (Waf1/Cip1) and p53 protein expression in breast cancer. Am J Clin Pathol. 1997;107(6):684–91.

    Article  PubMed  CAS  Google Scholar 

  8. Somlo G, Chu P, Frankel P, Ye W, Groshen S, Doroshow JH, et al. Molecular profiling including epidermal growth factor receptor and p21 expression in high-risk breast patients as indicators of outcome. Ann Oncol. 2008;19(11):1853–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL, et al. Subcellular localization of cyclin B, Cdc2 and p21WAF1/CIP1 in breast cancer: association with prognosis. Eur J Cancer. 2001;37(18):2405–12.

    Article  PubMed  CAS  Google Scholar 

  10. Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 2003;5(6):R242–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–52.

    Article  PubMed  CAS  Google Scholar 

  12. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res. 2004;10(11):3815–24.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng X, Xia W, Yang JY, Hsu JL, Chou CK, Sun HL, et al. Activation of p21 (CIP1/WAF1) in mammary epithelium accelerates mammary tumorigenesis and promotes lung metastasis. Biochem Biophys Res Commun. 2010;403(1):103–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ping B, He X, Xia W, Lee DF, Wei Y, Yu D, et al. Cytoplasmic expression of p21CIP1/WAF1 is associated with IKKβ overexpression in human breast cancers. Int J Oncol. 2006;29(5):1103–10.

    PubMed  CAS  Google Scholar 

  15. Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, et al. Prognostic value of p21WAF1 and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res. 1996;2(9):1591–99.

    PubMed  CAS  Google Scholar 

  16. Barbareschi M, Caffo O, Doglioni C, Fina P, Marchetti A, Buttitta F, et al. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival. Br J Cancer. 1996;74(2):208–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 1992;71(3):505–14.

    Article  PubMed  CAS  Google Scholar 

  18. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366(6456):701–4.

    Article  PubMed  CAS  Google Scholar 

  19. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.

    Article  PubMed  CAS  Google Scholar 

  20. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–16.

    Article  PubMed  CAS  Google Scholar 

  21. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res. 1994;211(1):90–8.

    Article  PubMed  CAS  Google Scholar 

  22. Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev. 2001;11(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair. 2004;3(8–9):889–900.

    Article  PubMed  CAS  Google Scholar 

  24. Li R, Waga S, Hannon GJ, Beach D, Stillman B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature. 1994;371(6497):534–37.

    Article  PubMed  CAS  Google Scholar 

  25. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282(5393):1497–501.

    Article  PubMed  CAS  Google Scholar 

  26. Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25(1):114–32.

    Article  PubMed  CAS  Google Scholar 

  27. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 1994;54(13):3391–95.

    PubMed  CAS  Google Scholar 

  28. Zhang W, Grasso L, McClain CD, Gambel AM, Cha Y, Travali S, et al. p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res. 1995;55(3):668–74.

    PubMed  CAS  Google Scholar 

  29. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995;92(12):5545–49.

    Article  PubMed  CAS  Google Scholar 

  30. Li XS, Rishi AK, Shao ZM, Dawson MI, Jong L, Shroot B, et al. Posttranscriptional regulation of p21WAF1/CIP1 expression in human breast carcinoma cells. Cancer Res. 1996;56(21):5055–62.

    PubMed  CAS  Google Scholar 

  31. Balbín M, Hannon GJ, Pendás AM, Ferrando AA, Vizoso F, Fueyo A, et al. Functional analysis of a p21WAF1,CIP1,SDI1 mutant (Arg94 → Trp) identified in a human breast carcinoma. Evidence that the mutation impairs the ability of p21 to inhibit cyclin-dependent kinases. J Biol Chem. 1996;271(26):15782–86.

    Article  PubMed  Google Scholar 

  32. Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen AL. Relationship between abnormal p53 protein and failure to express p21 protein in human breast carcinomas. J Pathol. 1997;181(2):140–45.

    Article  PubMed  CAS  Google Scholar 

  33. Murnyák B, Hortobágyi T. Immunohistochemical correlates of TP53 somatic mutations in cancer. Oncotarget. 2016;7(40):64910–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coutts AS, Adams CJ, La Thangue NB. p53 ubiquitination by Mdm2: a never ending tail? DNA Repair. 2009;8(4):483–90.

    Article  PubMed  CAS  Google Scholar 

  35. Sheikh MS, Rochefort H, Garcia M. Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines. Oncogene. 1995;11:1899–905.

    PubMed  CAS  Google Scholar 

  36. Li Y, Dowbenko D, Lasky LA. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem. 2002;277(13):11352–61.

    Article  PubMed  CAS  Google Scholar 

  37. Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell. 1998;2(5):581–91.

    Article  PubMed  CAS  Google Scholar 

  38. Yang W, Klos KS, Zhou X, Yao J, Yang Y, Smith TL, et al. ErbB2 overexpression in human breast carcinoma is correlated with p21Cip1 up-regulation and tyrosine-15 hyperphosphorylation of p34Cdc2: poor responsiveness to chemotherapy with cyclophosphamide, methotrexate, and 5-fluorouracil is associated with ErbB2 overexpression and with p21Cip1 overexpression. Cancer. 2003;98(6):1123–30.

    Article  PubMed  CAS  Google Scholar 

  39. Weiss RH, Marshall D, Howard L, Corbacho AM, Cheung AT, Sawai ET. Suppression of breast cancer growth and angiogenesis by an antisense oligodeoxynucleotide to p21Waf1/Cip1. Cancer Lett. 2003;189(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  40. Fan Y, Borowsky AD, Weiss RH. An antisense oligodeoxynucleotide to p21Waf1/Cip1 causes apoptosis in human breast cancer cells. Mol Cancer Ther. 2003;2(8):773–82.

    PubMed  CAS  Google Scholar 

  41. Zohny SF, Baothman OA, El-Shinawi M, Al-Malki AL, Zamzami MA, Choudhry H. The KIP/CIP family members p21Waf1/Cip1 and p57Kip2 as diagnostic markers for breast cancer. Cancer Biomark. 2017;18(4):413–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir F. Zohny.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohny, S.F., Al-Malki, A.L., Zamzami, M.A. et al. p21Waf1/Cip1: its paradoxical effect in the regulation of breast cancer. Breast Cancer 26, 131–137 (2019). https://doi.org/10.1007/s12282-018-0913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-018-0913-1

Keywords

Navigation