Skip to main content

Advertisement

Log in

Children and Sand Play: Screening of Potential Harmful Microorganisms in Sandboxes, Parks, and Beaches

  • Clinical Mycology Lab Issues (K Lagrou, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Sand serves as a reservoir for potentially pathogenic microorganisms. Children, a high-risk group, can acquire infections from sand in sandboxes, recreational areas, and beaches. This paper reviews the microbes in sands, with an emphasis on fungi. Recreational areas and beach sands have been found to harbor many types of fungi and microbes. A newly emerging group of fungi of concern include the black yeast-like fungi. After establishing that sand is a reservoir for fungi, clinical manifestations of fungal infections are described with an emphasis on ocular and ear infections. Overall, we recommend environmental studies to develop monitoring strategies for sand and studies to evaluate the link between fungi exposure in sand and human health impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nwachuku N, Gerba CP. Microbial risk assessment: don’t forget the children. Curr Opin Microbiol. 2004;7(3):206–9.

    Article  PubMed  Google Scholar 

  2. Overgaauw PAM, van Knapen F. Veterinary and public health aspects of Toxocara spp. Vet Parasitol. 2013;193:398–403.

    Article  PubMed  Google Scholar 

  3. Heaney CD, Sams E, Dufour AP, Brenner KP, Haugland RA, Chern E, et al. Fecal indicators in sand, sand contact, and risk of enteric illness among beach goers. Epidemiology. 2012;23(1):95–106.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hauschild T, Kachniarz J, Buczek J. Bacteria isolated from sandboxes in the city. Med.Weter.58[7]:513–516.

  5. Macuhova K, Akao N, Fuginami Y, Kumagai T, Otha N. Contamination, distribution and pathogenicity of Toxocara canis and T. cati eggs from sandpits in Tokyo, Japan. J Helminthol. 2012;1–6.

  6. Pérez-González M, Torres-Rodríguez JM, Martínez-Roig A, Segura S, Griera G, Trivinõ L, et al. Prevalence of tinea pedis, tinea unguium of toenails and tinea capitis in school children from Barcelona. Rev IberoamMicol. 2009;26(4):228–32.

    Google Scholar 

  7. Viegas, C.; Brandão, J., Sabino, R., Meneses, M., Veríssimo, C. Are sandpits from recreational parks and schools a risk for human health?. submitted Pilot study that assesses fungal contamination in sand from recreational parks, elementary schools and kindergartens in Tagus Valley, Lisbon. The high fungal load found in this study is important to suggest that when sand is not cleansed or replaced, it may represent a potential health risk for everyone but especially for children. Therefore, suggests that sand regulation measures should be implemented.

  8. Barroso H, Fernandes AC, Matias C, Brandão J, Duarte A. Playground floors may act as sources or reservoirs of free-living microbial populations. Journal of Toxicology and Environmental Health submitted

  9. Solo-Gabriele H, Harwood VJ, Kay D, Fujioka RS, Sadowsky MJ, Whitman RL, Wither A, Caniça M, da Fonseca RC, Duarte A, Edge TA, Gargaté MJ, Gunde-Cimerman N, Hagen F, McLellan SL, da Silva AN, Novak Babič M, Prada S, Rodrigues R, Romão D, Sabino R, Samson RA, Segal E, Staley C, Taylor HD, Veríssimo C, Viegas C, Brandão JC. Beach sand and the potential for infectious disease transmission: observations and recommendations. Journal of the Marine Biological Association UK. 2015 An extensive revision on pathogen levels in beach sand and their potential threat to human health. The focus of the paper is to provide recommendations and guidelines for beach monitoring programs, giving a background on spatial and temporal distribution of microorganisms in sand.

  10. Sabino R, Rodrigues R, Costa I, Carneiro C, Cunha M, Duarte A, et al. Routine screening of harmful microorganisms in beach sands: implications to public health. Sci Total Environ. 2014;472:1062–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ashbee HR, Evans EG, Viviani MA, Dupont B, Chryssanthou E, Surmont I, et al. Working Group on Histoplasmosis in Europe: report on an epidemiological survey from the European Confederation of Medical Mycology Working Group. Med Mycol. 2008;46(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ganavalli AS, Kulkarni RD. Cladophialophora bantiana the neurothopic fungus. J ClinDiagn Res. 2001;5(6):1301–6.

    Google Scholar 

  13. Gotkowska-Płachta A, Filipkowska Z, Korzeniewska E, Janczukowicz W, Dixon B, Gołaś I, et al. Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes. Clean—Soil Air. Water. 2013;41(5):429–36.

    Google Scholar 

  14. Whitman R, Harwood VJ, Edge TA, Nevers M, Byappanahalli M, Vijayavel K, et al. Microbes in beach sands: integrating environment, ecology and public health. Rev Environ Sci Biotechnol. 2014;13:329–68.

    Article  CAS  PubMed  Google Scholar 

  15. Sabino R, Veríssimo C, Cunha MA, Wergikoski B, Ferreira FC, Rodrigues R, et al. Pathogenic fungi: an unacknowledged risk at coastal resorts? New insights on microbiological sand quality in Portugal. Mar Pollut Bull. 2011;62(7):1506–11.

    Article  CAS  PubMed  Google Scholar 

  16. Shah A, Abdelzaher A, Phillips M, Hernandez R, Solo-Gabriele H, Kish J, et al. Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site. J Appl Microbiol. 2011;110:1571–83.

    Article  CAS  PubMed  Google Scholar 

  17. Vogel C, Rogerson A, Schatz S, Laubach H, Tallman A, Fell J. Prevalence of yeast in beach sand at three bathing beaches in South Florida. Water Res. 2007;41(9):1915–20.

    Article  CAS  PubMed  Google Scholar 

  18. Gonzales M, Hanlin TR, Herrera T, Ulloa M. Fungi colonizing hair-bats from three coastal beaches of Mexico. Mycoscience. 2000;41:259–62.

    Article  Google Scholar 

  19. Migahed F. Distribution of fungi in the sandy soil of Egyptian beaches. Mycobiology. 2003;31:61–7.

    Article  Google Scholar 

  20. Gomes DNF, Cavalcanti MAQ, Fernandes MJS, Lima DMM, Passavante JZO. Filamentous fungi isolated from sand and water of Bairro Novo and Casa Caiada beaches. Braz J Biol. 2008;68:577–82.

    Article  CAS  PubMed  Google Scholar 

  21. Bik MH, Halanych M, Sharma J, Thomas K. Dramatic shifts in benthic microbial eukaryote communities following the deep water horizon oil spill. PLoS ONE. 2012;7:1–6.

    Article  Google Scholar 

  22. Pong D, Marom T, Makishima T. Phialemonium infection complicating chronic suppurative otitis media. Med Mycol Case Rep. 2014;4:5–7. doi:10.1016/j.mmcr.2014.01.001.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A. Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;3:235–40.

    Google Scholar 

  24. Sterflinger K. Black yeasts and meristematic fungi: ecology, diversity and identification. In: Péter G, Rosa C. Biodiversity and ecophysiology of yeasts. Springer. 2006: 501–514.

  25. Dadachova E, Casadevall A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol. 2008;11(6):525–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Matos T, de Hoog GS, de Boer AG, de Crom I, Haase G. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses. 2002;45(9-10):373–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I. Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol. 2006;72(12):7586–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hamada N, Abe N. Comparison of fungi found in bathrooms and sinks. Biocontrol Sci. 2010;15(2):51–6.

    Article  PubMed  Google Scholar 

  29. Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N. Dishwashers—a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol. 2011;115(10):997–1007.

    Article  CAS  PubMed  Google Scholar 

  30. Novak Babič M, Zalar P, Zenko B, Schroers HJ, Dzeroski S, Gunde-Cimerman N. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol. 2015;119(2-3):95–113.

    Article  Google Scholar 

  31. Efstratiou MA, Velegraki A. (2010) Recovery of melanized yeasts from Eastern Mediterranean beach sand associated with the prevailing geochemical and marine flora patterns, Medical Mycology, 48, 413–415.Gotkowska-Płachta A, Korzeniewska E. Microbial evaluation of sandboxes located in urban area. Ecotox and EnvironSaf. 2014;113:64–71.

    Google Scholar 

  32. Pereira E, Figueira C, Aguiar N, Vasconcelos R, Vasconcelos S, Silva MG, et al. Microbiological and mycological beach sand quality in a volcanic environment: Madeira archipelago. Portugal Sci Total Environ. 2013;461–462:469–79.

    Article  PubMed  Google Scholar 

  33. Marzol MV, Yanes A, Romero C, Brito de Azevedo E, Prada S, Martins A. Los riesgos de las lluvias torrenciales en las islas de la Macaronesia [Azores, Madeira, Canarias y Cabo Verde]. In: Cuadrat Prats JM, Saz Sánchez MA, Vicente Serrano SM, Lanjeri S, De Luis Arrillaga M, González-Hidalgo JC, editors. Clima, Sociedad y Medio Ambiente. Publicaciones de la Asociación Española de Climatología, Serie A; 2006A:443–452.

  34. Marzol MV, Yanes A, Romero C, Brito de Azevedo E, Prada S, Martins A. Caractéristiques des précipitacions dans les îles de la Macaronesia [Açores, Madére, Canaries et Cap Vert]. Les Risques Liés au Temps et au climat. XIX Colloque de l’Association International de Climatologie [AIC], Épernay; 2006B:415-420.

  35. Brandão J, Wergikosky B, Rosado C, Noronha G, Veríssimo C, Falcão ML, Giraldes A, Simões M, Rebelo H. Qualidade Microbiológica de areias de Praias Litorais- Relatório Final. Alfragide: Instituto do Ambiente, Associação Bandeira Azul da Europa. 2002. http://repositorio.insa.pt/handle/10400.18/232. Accessed 4 May 2015.

  36. de Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi. CentraalbureauVoorSchimmelcultures: UniversitatRovira I Virgili, Utrecht/Reus; 2009.

    Google Scholar 

  37. Selbmann L, de Hoog GS, Mazzaglia A, Friedman EI, Onofri S. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol. 2005;51:1–32.

    Google Scholar 

  38. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, et al. Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol. 2008;61:1–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Harman EM, Rice TD, Byrd RPJr. Aspergillosis. Medscape: Drugs & Diseases. 2015

  40. The University of Adelaide. Identification of medically important fungi. Mycology Online. http://www.mycology.adelaide.edu.au/Fungal_Descriptions/. Accessed in 12 June 2015.

  41. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology, and clinical aspects of Fusarium species. Clinical Microbiology Reviews. 1994;7(4):479–504.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Woo PCY, Ngan AHY, Tsang CCC, et al. Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis. J Clin Microbiol. 2013;51(1):260–7. doi:10.1128/JCM.02336-12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Iwen PC, Schutte SD, Florescu DF, Noel-Hurst RK, Sigler L. Invasive Scopulariopsis brevicaulis infection in an immunocompromised patient and review of prior cases caused by Scopulariopsis and Microascus species. Med Mycol. 2012;50(6):561–9.

    Article  PubMed  Google Scholar 

  44. Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect. 2014;3:47–75.

    Article  Google Scholar 

  45. Cabañes FJ, Sutton DA, Guarro J. Chrysosporium-related fungi and reptiles: a fatal attraction. PLoS Pathogens. 2014

  46. Cortez KJ, Roilides E, Quiroz-Teles F, Meletiadis J, Antachopoulos C, Knudsen T, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21(1):157–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica. 2013;23.

  48. Hagen F, Colom MF, Swinne D, Tintelnot K, Iatta R, Montagna MT, et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg Infect Dis. 2012;18(10):1618–24.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Gotkowska-Płachta A, Korzeniewska E. Microbial evaluation of sandboxes located in urban area. Ecotoxicol Environ Saf. 2015;113:64–71. A study of bacteriological pollution of sandboxes in fenced and unfenced estates located in Olsztyn, Poland. The main aim is toevaluate the presence of several bacteria and fungi and focus attention on the monitoring parasites’ eggs and faecal bacteria counts as insufficient to evaluate microorganisms present in sandboxes and play areas.

    Article  PubMed  Google Scholar 

  50. Terr A. Stachybotrys: relevance to human disease. Ann Allergy Asthma Immunol. 2001;87(6 Suppl 3):57–63.

    Article  CAS  PubMed  Google Scholar 

  51. Vennewald I, Klemm E. Otomycosis: diagnosis and treatment. Clin Dermatol. 2010;28(2):202–11.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Daniela Romão, Cristina Veríssimo, Carla Viegas, Helena Barroso, Aida Duarte, Helena Solo-Gabriele, Nina Gunde-Cimerman, Tal Marom, and João Brandão declare that they have no conflict of interest.

Raquel Sabino was financially supported by a fellowship from Fundação para a Ciência e Tecnologia (FCT) Portugal (contract SFRH/BPD/72775/2010).

Monika Novak Babič was financially supported by a fellowship from Ministry of Education, Science and Sport and the University of Ljubljana [Innovative scheme for co-financing of doctoral studies, Contract No. 1244].

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Brandão.

Additional information

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romão, D., Sabino, R., Veríssimo, C. et al. Children and Sand Play: Screening of Potential Harmful Microorganisms in Sandboxes, Parks, and Beaches. Curr Fungal Infect Rep 9, 155–163 (2015). https://doi.org/10.1007/s12281-015-0230-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-015-0230-5

Keywords

Navigation