Skip to main content

Advertisement

Log in

Fungal Infections in Phagocytic Defects

Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Delineating the infection susceptibility of primary immunodeficiencies allows insight into host immunity. Filamentous mold infections are seen most frequently in chronic granulomatous disease, a neutrophil disorder characterized by impaired superoxide production. Mucocutaneous candidiasis occurs in disorders of impaired interleukin (IL)-17 and IL-22 signaling, such as seen in autosomal dominant hyper-IgE (Job’s) syndrome and in disorders with autoantibodies to these cytokines. The endemic dimorphic fungi are in part controlled by disorders of the IL-12/interferon (IFN)-γ pathway, such as IFN-γ receptor and STAT1 defects. Understanding the pathways involved in these primary immunodeficiency disorders will also provide insight into these infections in secondary immunodeficiencies and allow guidance for novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Holland SM. Chronic granulomatous disease. Clinic Rev Allergy Immunol. 2010;38:3–10. This is a current, state-of-the-art review of chronic granulomatous disease.

    Article  PubMed  CAS  Google Scholar 

  2. Winklestein JA, Marino MC, Johnston Jr RB, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.

    Article  Google Scholar 

  3. Sirinavin S, Techasaensiri C, Benjaponpitak S, et al. Invasive Chromobacterium violaceum infection in children: case report and review. Pediatr Infect Dis J. 2005;24:559–61.

    Article  PubMed  Google Scholar 

  4. Greenberg DE, Ding L, Zelazny AM, et al. A novel bacterium associated with lymphadenitis in a patient with chronic granulomatous disease. PLoS Pathogens. 2006;2:e28.

    Article  PubMed  Google Scholar 

  5. Segal BH, DeCarlo ES, Kwon-Chung KJ, et al. Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore). 1998;77:345–54.

    Article  CAS  Google Scholar 

  6. Vinh DC, Shea YR, Sugui JA, et al. Invasive aspergillosis due to Neosartorya udagawae. Clin Infect Dis. 2009;49:102–11.

    Article  PubMed  Google Scholar 

  7. Williamson PR, Kwon-Chung KJ, Gallin JI. Successful treatment of Paecilomyces varioti infection in a patient with chronic granulomatous disease and a review of Paecilomyces species infection. Clin Infect Dis. 1992;14:1023–6.

    Article  PubMed  CAS  Google Scholar 

  8. Gallin JI, Alling DW, Malech HL, et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003;348:2416–22.

    Article  PubMed  CAS  Google Scholar 

  9. Freeman AF, Holland SM. Antimicrobial prophylaxis for primary immunodeficiencies. Curr Opin Clin Immunol. 2009;9:525–30.

    Article  CAS  Google Scholar 

  10. Siddiqui S, Anderson VL, Hilligoss DM, et al. Fulminant mulch pneumonitis: an emergency presentation of chronic granulomatous disease. Clin Infect Dis. 2007;45:673–81.

    Article  PubMed  CAS  Google Scholar 

  11. Mucormycosis in chronic granulomatous disease: association with iatrogenic immunosuppression. J Allergy Clin Immunol. 2009;123:1411–3.

  12. Wynne SM, Kwon-Chung KJ, Shea YR, et al. Invasive infection with Trichosporon inkin in 2 siblings with chronic granulomatous disease. J Allergy Clin Immunol. 2004;114:1418–24.

    Article  PubMed  Google Scholar 

  13. • Freeman AF, Holland SM. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr Res. 2009;65:32R-7R. This is a detailed review of hyper-IgE syndrome (HIES).

    Article  PubMed  Google Scholar 

  14. Freeman AF, Kleiner DE, Nadiminti H, Davis J, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol. 2007;119:1234–40.

    Article  PubMed  CAS  Google Scholar 

  15. Vinh DC, Sugui JA, Hsu AP, et al. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125:1389–90.

    Article  PubMed  CAS  Google Scholar 

  16. Freeman AF, Davis J, Anderson VL, et al. Pneumocystis jiroveci infection in patients with hyper-immunoglobulin E syndrome. Pediatrics. 2006;118:e1271–5.

    Article  PubMed  Google Scholar 

  17. Lanza F. Clinical manifestations of myeloperoxidase deficiency. J Mol Med. 1998;76:676–81.

    Article  PubMed  CAS  Google Scholar 

  18. Etzioni A. Leukocyte adhesion deficiencies: molecular basis, clinical findings, and therapeutic options. Adv Exp Med Biol. 2007;601:51–60.

    Article  PubMed  Google Scholar 

  19. Palmblad J, Papadaki HA. Chronic idiopathic neutropenias and severe congenital neutropenia. Curr Opin Hematol. 2008;15:8–14.

    Article  PubMed  CAS  Google Scholar 

  20. • Vinh DC, Patel SY, Uzel G. Autosomal dominant and sporadic monocytopenia and susceptibility to mycobacteria, fungi, papillomaviruses and myelodysplasia. Blood 2010;115:1519–29. This article describes a newly defined disorder of monocytopenia and disseminated mycobacteria and other opportunists.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 2011 Jun 13 (Epub ahead of print).

  22. Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205:1551–7.

    Article  PubMed  CAS  Google Scholar 

  23. •• Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H) 17 cell differentiation in subjects with autosomal dominant Hyper-IgE syndrome. Nature 2008;452:773–6. This is the first of several manuscripts demonstrating the impaired Th17 cell differentiation in hyper-IgE syndrome, leading to many further studies demonstrating the importance of this pathway in mucocutaneous Candida immunity.

    Article  PubMed  CAS  Google Scholar 

  24. Renner ED, Rylaarsdam S, Anover-Sombke S, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H) 17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122:181–7.

    Article  PubMed  CAS  Google Scholar 

  25. •• Holland SM, Vinh DC. Yeast infections—human genetics on the rise. N Engl J Med. 2009;361:1798–801. This excellent summary of some of the advances in host control of fungal infections summarizes references 26 and 27 below, which were key papers demonstrating monogenetic causes of Candida susceptibility.

    Article  PubMed  CAS  Google Scholar 

  26. LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.

    Article  PubMed  CAS  Google Scholar 

  27. • Puel A, Picard C, Cypowyj S, et al. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol. 2010;22:467–74. This paper describes defects associated with mucocutaneous Candida susceptibility.

    Article  PubMed  CAS  Google Scholar 

  28. • Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:1760–7. This paper describes a newly defined genetic defect associated with mucocutaneous Candida infections.

    Article  PubMed  CAS  Google Scholar 

  29. •• Glocker ED, Hennings A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35. This paper describes a newly defined genetic defect associated with fungal susceptibility.

    Article  PubMed  CAS  Google Scholar 

  30. •• Kisand K, Boe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308. References 29 through 32 demonstrate the emerging recognition of the role of cytokine autoantibodies in immune deficiency syndromes.

    Article  PubMed  CAS  Google Scholar 

  31. •• Puel A, Doffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17 F, and Il-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type 1. J Exp Med. 2010;207:291–7. This paper demonstrates the emerging recognition of the role of cytokine autoantibodies in immune deficiency syndromes.

    Article  PubMed  CAS  Google Scholar 

  32. • Browne SK, Holland SM. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms. Lancet Infect Dis. 2010;10:875–85. This paper demonstrates the emerging recognition of the role of cytokine autoantibodies in immune deficiency syndromes.

    Article  PubMed  CAS  Google Scholar 

  33. • Burbelo PD, Browne SK, Sampaio EP, et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood 2010;116:4848–58. This paper demonstrates the emerging recognition of the role of cytokine autoantibodies in immune deficiency syndromes.

    Article  PubMed  CAS  Google Scholar 

  34. Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008;122:1043–51.

    Article  PubMed  CAS  Google Scholar 

  35. Holland SM. Interferon gamma, IL-12, IL-12R and STAT1 immunodeficiency diseases: disorders of the interface of innate and adaptive immunity. Immunol Res. 2007;38:342–6.

    Article  PubMed  CAS  Google Scholar 

  36. Orange JS, Jain A, Ballas ZK, et al. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113:725–33.

    Article  PubMed  CAS  Google Scholar 

  37. Vinh DC, Masannat F, Dzioba RB, Galgiani JN, Holland SM. Refractory disseminated coccidioidomycosis and mycobacteria in interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2009;49:e62–5.

    Article  PubMed  CAS  Google Scholar 

  38. Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis. 2005;41:e38–41.

    Article  PubMed  Google Scholar 

  39. Averbuch D, Chapgier A, Boisson-Dupuis S, Casanova JL, Engelhard D. The clinical spectrum of patients with deficiency of signal transducer and activator of transcription 1. Pediatr Infect Dis J. 2011;30:352–5.

    Article  PubMed  Google Scholar 

  40. van de Veerdonk FL, Plantinga TS, Hoischen A, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61.

    Article  PubMed  Google Scholar 

  41. Vinh DC, Schwartz B, Hsu AP, et al. Interleukin-12 receptor β1 deficiency predisposing to disseminated coccidioidomycosis. Clin Infect Dis. 2011;52:e99–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Programs of the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. The views expressed in this article are those of the authors and do not reflect the official policy of the U.S. Government.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra F. Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, A.F., Holland, S.M. Fungal Infections in Phagocytic Defects. Curr Fungal Infect Rep 5, 245–251 (2011). https://doi.org/10.1007/s12281-011-0063-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-011-0063-9

Keywords

Navigation