Skip to main content
Log in

Echinocandin-Resistant Candida: Molecular Methods and Phenotypes

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

We now have a decade of experience with echinocandin drugs. Large-scale epidemiologic antifungal surveillance studies have demonstrated that caspofungin, micafungin, and anidulafungin retain high potency on clinical isolates of Candida, and resistance remains relatively low. Yet reports of breakthrough infections involving strains with a high minimum inhibitory concentration (MIC) are mounting. Mechanism-specific resistance involving amino acid substitutions in the Fks subunit(s) of the drug target glucan synthase results in reduced enzyme sensitivity to drug and high MICs. The mechanism affects all three drugs and is encountered in all Candida species, as well as in Aspergillus. An initial susceptibility testing breakpoint failed to adequately distinguish wild-type susceptible isolates from fks mutant resistant strains. Considering data from epidemiologic, microbiologic, pharmacokinetic/pharmacodynamic, biochemical, and genetic studies that better capture resistant isolates with fks genotypes has resulted in a proposed new breakpoint which provides a more reliable measure of probable therapeutic success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance

  1. Kartsonis N, DiNubile MJ, Bartizal K, et al. Efficacy of caspofungin in the treatment of esophageal candidiasis resistant to fluconazole. J Acquir Immune Defic Syndr. 2002;31:183–7.

    Article  PubMed  CAS  Google Scholar 

  2. Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–82.

    Article  PubMed  CAS  Google Scholar 

  3. Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–93.

    Article  PubMed  CAS  Google Scholar 

  4. Ostrosky-Zeichner L, Alexander BD, Kett DH, et al. Multicenter clinical evaluation of the (1-->3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41:654–9.

    Article  PubMed  CAS  Google Scholar 

  5. Maertens J, Egerer G, Shin WS, et al. Caspofungin use in daily clinical practice for treatment of invasive aspergillosis: results of a prospective observational registry. BMC Infect Dis. 2010;10:182.

    Article  PubMed  Google Scholar 

  6. Lehrnbecher T, Groll AH. Micafungin: a brief review of pharmacology, safety, and antifungal efficacy in pediatric patients. Pediatr Blood Cancer. 2010;55:229–32.

    Article  PubMed  Google Scholar 

  7. Walsh TJ, Adamson PC, Seibel NL, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49:4536–45.

    Article  PubMed  CAS  Google Scholar 

  8. Vazquez JA. The safety of anidulafungin. Expert Opin Drug Saf. 2006;5:751–8.

    Article  PubMed  CAS  Google Scholar 

  9. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol. 1997;35:79–86.

    Article  PubMed  CAS  Google Scholar 

  10. Bowman JC, Hicks PS, Kurtz MB, et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother. 2002;46:3001–12.

    Article  PubMed  CAS  Google Scholar 

  11. Pfaller MA, Messer SA, Boyken L, et al. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol. 2003;41:5729–31.

    Article  PubMed  CAS  Google Scholar 

  12. Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol. 2002;40:2228–30.

    Article  PubMed  CAS  Google Scholar 

  13. Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68:5459–63.

    Article  PubMed  CAS  Google Scholar 

  14. Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362:1142–51.

    Article  PubMed  CAS  Google Scholar 

  15. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10:121–30.

    Article  PubMed  CAS  Google Scholar 

  16. • Pfaller MA, Diekema DJ, Andes D, et al. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011, Feb 23 (Epub ahead of print). This critical report summarizes data used by the CLSI to establish revised clinical breakpoints for echinocandin susceptibility and resistance.

  17. Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol. 2011;6:441–57.

    Article  PubMed  CAS  Google Scholar 

  18. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46:150–6.

    Article  PubMed  CAS  Google Scholar 

  19. Pfaller MA, Boyken L, Hollis RJ, et al. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48:52–6.

    Article  PubMed  CAS  Google Scholar 

  20. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol. 2008;46:2620–9.

    Article  PubMed  CAS  Google Scholar 

  21. • Pfaller M, Boyken L, Hollis R, Kroeger J, Messer S, Tendolkar S, et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J Clin Microbiol. 2011;49(2):624–9. This is a comprehensive global surveillance study identifying non–wild-type clinical isolates by species and drug.

    Article  PubMed  CAS  Google Scholar 

  22. Arendrup MC, Bruun B, Christensen JJ, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol. 2011;49:325–34.

    Article  PubMed  Google Scholar 

  23. Pfaller MA, Moet GJ, Messer SA, et al. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008–2009. Antimicrob Agents Chemother. 2011;55:561–6.

    Article  PubMed  CAS  Google Scholar 

  24. Zimbeck AJ, Iqbal N, Ahlquist AM, et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother. 2010;54:5042–7.

    Article  PubMed  CAS  Google Scholar 

  25. Castanheira M, Woosley LN, Diekema DJ, et al. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54:2655–9.

    Article  PubMed  CAS  Google Scholar 

  26. Douglas CM, Foor F, Marrinan JA, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci USA. 1994;91:12907–11.

    Article  PubMed  CAS  Google Scholar 

  27. Mazur P, Morin N, Baginsky W, et al. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995;15:5671–81.

    PubMed  CAS  Google Scholar 

  28. Garcia-Effron G, Lee S, Park S, et al. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53:3690–9.

    Article  PubMed  CAS  Google Scholar 

  29. Mazur P, Baginsky W. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP- binding protein Rho1. J Biol Chem. 1996;271:14604–9.

    Article  PubMed  CAS  Google Scholar 

  30. Frost D, Brandt K, Estill C, et al. Partial purification of (1,3)-beta-glucan synthase from Candida albicans. FEMS Microbiol Lett. 1997;146:255–61.

    Article  PubMed  CAS  Google Scholar 

  31. • Garcia-Effron G, Park S, Perlin DS. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009;53:112–22. This comprehensive evaluation of fks mutant genotypes, MIC, and kinetic inhibition of glucan synthase from C. albicans reveals the need to reassess the initial clinical breakpoint.

    Article  PubMed  CAS  Google Scholar 

  32. Pratt A, Garcia-Effron G, Mustaev A, et al. Evaluation of fluorescent labeled caspofungin for fungal identification [abstract]. Presented at the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC 2010). Boston, MA, September 12–15, 2010.

  33. Paderu P, Park S, Perlin DS. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother. 2004;48:3845–9.

    Article  PubMed  CAS  Google Scholar 

  34. Cowen LE. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog. 2009;5:e1000471.

    Article  PubMed  Google Scholar 

  35. Kartsonis N, Killar J, Mixson L, et al. Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother. 2005;49:3616–23.

    Article  PubMed  CAS  Google Scholar 

  36. Pfaller MA, Diekema DJ, Boyken L, et al. Effectiveness of anidulafungin in eradicating Candida species in invasive candidiasis. Antimicrob Agents Chemother. 2005;49:4795–7.

    Article  PubMed  CAS  Google Scholar 

  37. Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49:3264–73.

    Article  PubMed  CAS  Google Scholar 

  38. Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2006;50:2892–4.

    Article  PubMed  CAS  Google Scholar 

  39. Slater JL, Howard SJ, Sharp A, et al. Disseminated candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother. 2011, in press.

  40. Andes DR, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:3497–503.

    Article  PubMed  CAS  Google Scholar 

  41. Andes D, Ambrose PG, Hammel JP, et al. Use of pharmacokinetic-pharmacodynamic analyses to optimize therapy with the systemic antifungal, micafungin, for invasive candidiasis or candidemia. Antimicrob Agents Chemother. 2011;55:2113–21.

    Article  PubMed  Google Scholar 

  42. Andes D, Diekema DJ, Pfaller MA, et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54:2497–506.

    Article  PubMed  CAS  Google Scholar 

  43. Desnos-Ollivier M, Bretagne S, Raoux D, et al. Mutations in the fks1 gene in Candida albicans, C. tropicalis, and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing. Antimicrob Agents Chemother. 2008;52:3092–8.

    Article  PubMed  CAS  Google Scholar 

  44. Arendrup MC, Park S, Brown S, et al. Evaluation of caspofungin and micafungin CLSI M44-A2 Disk Diffusion and associated breakpoints testing using a well characterized panel of wild type and fks hot spot mutant Candida isolates. Antimicrob Agents Chemother. 2011;55:1891–5.

    Article  PubMed  Google Scholar 

  45. Garcia-Effron G, Park S, Perlin DS. Improved detection of Candida spp. fks hot spot mutants using the CLSI M27-A3 Document by the addition of Bovine Serum Albumin (BSA). Antimicrob Agents Chemother. 2011;55:2245–55.

    Google Scholar 

  46. Arendrup MC, Rodriguez-Tudela JL, Park S, et al. Echinocandin susceptibility testing of Candida spp. using EUCAST EDef 7.1 and CLSI M27-A3 standard procedures: analysis of the influence of bovine serum albumin supplementation, storage time, and drug lots. Antimicrob Agents Chemother. 2011;55:1580–7.

    Article  PubMed  Google Scholar 

  47. Perlin DS. Antifungal drug resistance: do molecular methods provide a way forward? Curr Opin Infect Dis. 2009;22:568–73.

    Article  PubMed  CAS  Google Scholar 

  48. Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50:2058–63.

    Article  PubMed  CAS  Google Scholar 

  49. Ben-Ami R, Garcia-Effron G, Lewis RE, et al. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis. 2011, in press.

Download references

Acknowledgments

Studies on echinocandin drugs in the Perlin lab are supported by grants from the National Institutes of Health (AI069397), Merck, Pfizer, and Astellas. I want to thank Steven Park and Yanan Zhao for their contributions to the preparation of the manuscript.

Disclosure

Conflicts of Interest: Dr. Perlin serves on advisory and opinion leader boards for Merck, Pfizer, and Astellas, and he also receives grant support from these companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Perlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlin, D.S. Echinocandin-Resistant Candida: Molecular Methods and Phenotypes. Curr Fungal Infect Rep 5, 113–119 (2011). https://doi.org/10.1007/s12281-011-0054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-011-0054-x

Keywords

Navigation