Skip to main content

Advertisement

Log in

Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Understanding which fungal factors allow colonization and infection of a human host is critical to lowering the incidence of human mycoses and related mortalities. In the pathogen Aspergillus fumigatus, secondary metabolites, small bioactive molecules produced by many opportunistic fungal pathogens, have important roles in suppressing and providing protection from host defenses. Deletion of LaeA, a global regulator of secondary metabolism in fungi, significantly decreases A. fumigatus virulence, in part owing to loss of gliotoxin and hydrophobin production. In addition to gliotoxin, dihydroxynaphthalene (DHN) melanin and siderophores are other A. fumigatus virulence factors; all three metabolites are derived from hallmark secondary metabolite gene clusters. Many of the gene clusters producing toxin metabolites have yet to be deciphered, and the study of secondary metabolites and their role in the virulence of human pathogens is a nascent field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Davies J: Recombinant DNA and the Production of Small Molecules. Washington, DC: ASM Press; 1985.

    Google Scholar 

  2. Rohlfs M, Albert M, Keller NP, Kempken F: Secondary chemicals protect mould from fungivory. Biol Lett 2007, 3:523–525.

    Article  PubMed  Google Scholar 

  3. Proctor RH, Hohn TM, McCormick SP: Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 1995, 8:593–601.

    CAS  PubMed  Google Scholar 

  4. Paterson RR, Lima N: Toxicology of mycotoxins. EXS 2010, 100:31–63.

    CAS  PubMed  Google Scholar 

  5. Richard JL: Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol 2007, 119:3–10.

    Article  CAS  PubMed  Google Scholar 

  6. • Cichewicz RH: Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009, 27:11–22. This article reviews the manipulation of chromatin-modifying enzymes to upregulate cryptic gene clusters and identify the resultant secondary metabolites.

    Article  PubMed  Google Scholar 

  7. Brase S, Encinas A, Keck J, Nising CF: Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 2009, 109:3903–3990.

    Article  PubMed  Google Scholar 

  8. Hoffmeister D, Keller NP: Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 2007, 24, 393–416.

    Article  CAS  PubMed  Google Scholar 

  9. Nierman WC, Pain A, Anderson MJ, et al.: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005, 438:1151–1156.

    Article  CAS  PubMed  Google Scholar 

  10. Maicas S, Moreno I, Nieto A, et al.: In silico analysis for transcription factors with Zn(II)2C6 binuclear cluster DNA-binding domains in Candida albicans. Comp Funct Genomics 2005, 6:345–356.

    Article  CAS  PubMed  Google Scholar 

  11. Bok JW, Chung D, Balajee SA, et al.: GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 2006, 74:6761–6768.

    Article  CAS  PubMed  Google Scholar 

  12. Woloshuk CP, Foutz KR, Brewer JF, et al.: Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 1994, 60:2408–2414.

    CAS  PubMed  Google Scholar 

  13. Proctor RH, Hohn TM, McCormick SP, Desjardins AE: Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 1995, 61:1923–1930.

    CAS  PubMed  Google Scholar 

  14. Yu JH, Keller N: Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 2005, 43:437–458.

    Article  CAS  PubMed  Google Scholar 

  15. Bok JW, Keller NP: LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 2004, 3:527–535.

    Article  CAS  PubMed  Google Scholar 

  16. Bok JW, Balajee SA, Marr KA, et al.: LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 2005, 4:1574–1582.

    Article  CAS  PubMed  Google Scholar 

  17. Kale SP, Milde L, Trapp MK, et al.: Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol 2008, 45:1422–1429.

    Article  CAS  PubMed  Google Scholar 

  18. Fedorova ND, Khaldi N, Joardar VS, et al.: Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 2008, 4:e1000046.

    Article  PubMed  Google Scholar 

  19. Kosalkova K, Garcia-Estrada C, Ullan RV, et al.: The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2009, 91:214–225.

    Article  CAS  PubMed  Google Scholar 

  20. Bayram O, Krappmann S, Ni M, et al.: VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320:1504–1506.

    Article  CAS  PubMed  Google Scholar 

  21. Amaike S, Keller NP: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot Cell 2009, 8:1051–1060.

    Article  CAS  PubMed  Google Scholar 

  22. Perrin RM, Fedorova ND, Bok JW, et al.: Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 2007, 3:e50.

    Article  PubMed  Google Scholar 

  23. Stinnett SM, Espeso EA, Cobeno L, et al.: Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 2007, 63:242–255.

    Article  CAS  PubMed  Google Scholar 

  24. Bok JW, Noordermeer D, Kale SP, Keller NP: Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 2006, 61:1636–1645.

    Article  CAS  PubMed  Google Scholar 

  25. Reyes-Dominguez Y, Bok JW, Berger H, et al.: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 2010, 76:1376–1386.

    Article  CAS  PubMed  Google Scholar 

  26. Shwab EK, Bok JW, Tribus M, et al.: Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 2007, 6:1656–1664.

    Article  CAS  PubMed  Google Scholar 

  27. Dagenais TR, Giles SS, Aimanianda V, et al.: Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect Immun 2010, 78:823–829.

    Article  CAS  PubMed  Google Scholar 

  28. Sugui JA, Pardo J, Chang YC, et al.: Role of laeA in the Regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryot Cell 2007, 6:1552–1561.

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Ami R, Lewis RE, Leventakos K, Kontoyiannis DP: Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood 2009, 114:5393–5399.

    Article  CAS  PubMed  Google Scholar 

  30. • Aimanianda V, Bayry J, Bozza S, et al.: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009, 460:1117–1121. This paper demonstrates that the RodA protein coating the conidia surface renders the spores immunologically inert.

    Article  CAS  PubMed  Google Scholar 

  31. McDonagh A, Fedorova ND, Crabtree J, et al.: Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 2008, 4:e1000154.

    Article  PubMed  Google Scholar 

  32. Menzel AEO, Wintersteiner O, Hoogerheide JC: The isolation of gliotoxin and fumigacin from culture filtrates of Aspergillus fumigatus. J Biol Chem 1944, 152:419–429.

    CAS  Google Scholar 

  33. Gardiner DM, Howlett BJ: Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 2005, 248:241–248.

    Article  CAS  PubMed  Google Scholar 

  34. Balibar CJ, Walsh CT: GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 2006, 45:15029–15038.

    Article  CAS  PubMed  Google Scholar 

  35. Cramer RA Jr, Gamcsik MP, Brooking RM, et al.: Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell 2006, 5:972–980.

    Article  CAS  PubMed  Google Scholar 

  36. Golden MC, Hahm SJ, Elessar RE, et al.: DNA damage by gliotoxin from Aspergillus fumigatus. An occupational and environmental propagule: adduct detection as measured by 32P DNA radiolabelling and two-dimensional thin-layer chromatography. Mycoses 1998, 41:97–104.

    Article  CAS  PubMed  Google Scholar 

  37. Kupfahl C, Geginat G, Hof H: Gliotoxin-mediated suppression of innate and adaptive immune functions directed against Listeria monocytogenes. Med Mycol 2006, 44(7):591–599.

    Article  CAS  PubMed  Google Scholar 

  38. Spikes S, Xu R, Nguyen CK, et al.: Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis 2008, 197:479–486.

    Article  CAS  PubMed  Google Scholar 

  39. Kupfahl C, Heinekamp T, Geginat G, et al.: Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol Microbiol 2006, 62:292–302.

    Article  CAS  PubMed  Google Scholar 

  40. Sugui JA, Pardo J, Chang YC, et al.: Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 2007, 6:1562–1569.

    Article  CAS  PubMed  Google Scholar 

  41. • Kwon-Chung KJ, Sugui JA: What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol 2009, 47(Suppl 1):S97–S103. This article reviews the equivocal results of five studies concerning gliotoxin as a virulence factor in mouse models and highlights that the immune suppression treatment used was the determining factor in all studies.

    Article  CAS  PubMed  Google Scholar 

  42. • Liu GY, Nizet V: Color me bad: microbial pigments as virulence factors. Trends Microbiol 2009, 17:406–413. This paper reviews a broad range of pigments and their roles in the virulence of bacteria, fungi, and protozoa pathogens.

    Article  CAS  PubMed  Google Scholar 

  43. • Karkowska-Kuleta J, Rapala-Kozik M, Kozik A: Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 2009, 56:211–224. This article reviews molecular mechanisms of virulence in addition to secondary metabolism for three important fungal pathogens.

    CAS  PubMed  Google Scholar 

  44. Gomez BL, Nosanchuk JD: Melanin and fungi. Curr Opin Infect Dis 2003, 16:91–96.

    CAS  PubMed  Google Scholar 

  45. Keller NP, Hohn TM: Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 1997, 21:17–29.

    Article  CAS  Google Scholar 

  46. Fujii I, Mori Y, Watanabe A, et al.: Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci Biotechnol Biochem 1999, 63:1445–1452.

    Article  CAS  PubMed  Google Scholar 

  47. Tsai HF, Chang YC, Washburn RG, et al: The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 1998, 180:3031–3038.

    CAS  PubMed  Google Scholar 

  48. Sugareva V, Hartl A, Brock M, et al.: Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch Microbiol 2006, 186:345–355.

    Article  CAS  PubMed  Google Scholar 

  49. • Chai LY, Netea MG, Sugui J, et al.: Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 2009 Nov 23 (Epub ahead of print). This paper advances our understanding of how melanins protect conidia from host defenses.

  50. Tsai HF, Wheeler MH, Chang YC, et al.: A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 1999, 181:6469–6477.

    CAS  PubMed  Google Scholar 

  51. •• Haas H, Eisendle M, Turgeon BG: Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 2008, 46:149–187. This is a thorough review of iron acquisition mechanisms, siderophore biosynthesis, iron storage, iron metabolism regulation, and virulence in both plants and animals.

    Article  CAS  PubMed  Google Scholar 

  52. Schrettl M, Bignell E, Kragl C, et al.: Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 2007, 3:1195–1207.

    Article  CAS  PubMed  Google Scholar 

  53. Wallner A, Blatzer M, Schrettl M, et al.: Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 2009, 75:4194–4196.

    Article  CAS  PubMed  Google Scholar 

  54. Maiya S, Grundmann A, Li X, et al.: Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 2007, 8:1736–1743.

    Article  CAS  PubMed  Google Scholar 

  55. Maiya S, Grundmann A, Li SM, et al.: The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 2006, 7:1062–1069.

    Article  CAS  PubMed  Google Scholar 

  56. Unsold IA, Li SM: Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1. Chembiochem 2006, 7:158–164.

    Article  PubMed  Google Scholar 

  57. Mitsuguchi H, Seshime Y, Fujii I, et al.: Biosynthesis of steroidal antibiotic fusidanes: functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc 2009, 131:6402–6411.

    Article  CAS  PubMed  Google Scholar 

  58. Frisvad JC, Rank C, Nielsen KF, Larsen TO: Metabolomics of Aspergillus fumigatus. Med Mycol 2009, 47(Suppl 1):S53–S71.

    Article  CAS  PubMed  Google Scholar 

  59. Reeves EP, Reiber K, Neville C, et al.: A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus. FEBS J 2006, 273:3038–3053.

    Article  CAS  PubMed  Google Scholar 

  60. Kremer A, Westrich L, Li SM: A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology 2007, 153:3409–3416.

    Article  CAS  PubMed  Google Scholar 

  61. Lodeiro S, Xiong Q, Wilson WK, et al.: Protostadienol biosynthesis and metabolism in the pathogenic fungus Aspergillus fumigatus. Org Lett 2009, 11:1241–1244.

    Article  CAS  PubMed  Google Scholar 

  62. Ames BD, Walsh CT: Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 2010, 49:3351–3365.

    Article  CAS  PubMed  Google Scholar 

  63. Pihet M, Vandeputte P, Tronchin G, et al.: Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 2009, 9:177.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy P. Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvey, G.S., Keller, N.P. Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. Curr Fungal Infect Rep 4, 256–265 (2010). https://doi.org/10.1007/s12281-010-0032-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-010-0032-8

Keywords

Navigation