Skip to main content
Log in

Enzyme activity of Aspergillus section Nigri strains isolated from the Korean fermentation starter, nuruk

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus section Nigri is a fungus used industrially because of its ability to produce enzymes such as cellulolytic, amylolytic and proteolytic enzymes. In this study, we obtained twenty-eight strains of Aspergillus section Nigri from the traditional Korean fermentation starter, nuruk, which is known as a mixed culture of enzymatic filamentous fungi and yeasts. All strains were identified as Aspergillus section Nigri through combined phylogenetic analysis using partial β-tubulin and calmodulin gene sequences. The cellulase, amylase and protease activities of Korean strains were measured and compared with ten reference strains of Aspergillus niger. Most Korean strains showed higher cellulolytic activity than reference strains, and Aspergillus neoniger KCN5 showed the highest β-glucosidase activity. Two-thirds of the Korean strains showed similar levels of α- and glucoamylase activity as the reference strains. The protease activity of Aspergillus section Nigri strains was the highest at pH 3.0, and A. niger KSJ2 showed the highest acidic protease activity. By comparing ten reference strains and twenty-eight Korean strains, our results suggested useful Aspergillus section Nigri strains from nuruk with high enzyme activity, such as KCN5 and KSJ2, and their potential for industrial applications as enzyme producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdella, A., El-Baz, A.F., Ibrahim, I.A., Mahrous, E.E., and Yang, S.T. 2018. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme. Nat. Prod. Res. 32, 2382–2391.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Pontes, M.V., Brandl, J., McDonnell, E., Strasser, K., Nguyen, T.T.M., Riley, R., Mondo, S., Salamov, A., Nybo, J.L., Vesth, T.C., et al. 2018. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud. Mycol. 91, 61–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, A., Nasim, F.U., Batool, K., and Bibi, A. 2017. Microbial β-glucosidase: sources, production and applications. J. Appl. Environ. Microbiol. 5, 31–46.

    Article  CAS  Google Scholar 

  • Al-Hindi, R.R., Al-Najada, A.R., and Mohamed, S.A. 2011. Isolation and identification of some fruit spoilage fungi: screening of plant cell wall degrading enzymes. Afr. J. Microbiol. Res. 5, 443–448.

    CAS  Google Scholar 

  • Andersen, M.R., Salazar, M.P., Schaap, P.J., van de Vondervoort, P.J., Culley, D., Thykaer, J., Frisvad, J.C., Nielsen, K.F., Albang, R., Albermann, K., et al. 2011. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 21, 885–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal, J., Yun, S.H., Song, H.Y., Yeo, S.H., Kim, J.H., Kim, J.M., and Kim, D.H. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52, 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  • Borin, G.P., Sanchez, C.C., de Santana, E.S., Zanini, G.K., Dos Santos, R.A.C., de Oliveira Pontes, A., de Souza, A.T., Dal’Mas, R.M.M.T.S., Riaño-Pachón, D.M., Goldman, G.H., et al. 2017. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 18, 501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns, T.C., Nai, C., and Meyer, V. 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 5, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll, E., Trinh, T.N., Son, H., Lee, Y.W., and Seo, J.A. 2017. Comprehensive analysis of fungal diversity and enzyme activity in nuruk, a Korean fermenting starter, for acquiring useful fungi. J. Microbiol. 55, 357–365.

    Article  CAS  PubMed  Google Scholar 

  • Coronado-Ruiz, C., Avendaño, R., Escudero-Leyva, E., Conejo-Barboza, G., Chaverri, P., and Chavarría, M. 2018. Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci. Rep. 8, 7492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cota-Sánchez, J.H., Remarchuk, K., and Ubayasena, K. 2006. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol. Biol. Rep. 24, 161.

    Article  Google Scholar 

  • Delmas, S., Pullan, S.T., Gaddipati, S., Kokolski, M., Malla, S., Blythe, M.J., Ibbett, R., Campbell, M., Liddell, S., Aboobaker, A., et al. 2012. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet. 8, e1002875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dojnov, B. and Vujčić, Z. 2012. Fast and reliable method for simultaneous zymographic detection of glucoamylase and α-amylase in fungal fermentation. Anal. Biochem. 421, 802–804.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, E.A.A., Damasceno, C.L., de Oliveira, T.A.S., Barbosa, L.O., Martins, F.M., de Queiroz Silva, J.R., de Lima, T.E.F., da Silva, R.M., Kato, R.B., Bortolini, D.E., et al. 2018. Putting the mess in order: Aspergillus welwitschiae (and not A. niger) is the etiological agent of sisal bole rot disease in Brazil. Front. Microbiol. 9, 1227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fungaro, M.H.P., Ferranti, L.S., Massi, F.P., da Silva, J.J., Sartori, D., Taniwaki, M.H., Frisvad, J.C., and Iamanaka, B.T. 2017. Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. Sci. Rep. 7, 6203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gera, N., Uppaluri, R.V.S., Sen, S., and Dasu, V.V. 2008. Growth kinetics and production of glucose oxidase using Aspergillus niger NRRL 326. Chem. Biochem. Eng. Q. 22, 315–320.

    CAS  Google Scholar 

  • Gil-Serna, J., García-Díaz, M., Vázquez, C., González-Jaén, M.T., and Patiño, B. 2019. Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol. 82, 240–248.

    Article  CAS  PubMed  Google Scholar 

  • Gruben, B.S., Mäkelä, M.R., Kowalczyk, J.E., Zhou, M., Benoit-Gelber, I., and De Vries, R.P. 2017. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 18, 900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurumallesh, P., Alagu, K., Ramakrishnan, B., and Muthusamy, S. 2019. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 128, 254–267.

    Article  CAS  PubMed  Google Scholar 

  • Jernejc, K. and Legiša, M. 2004. A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger. J. Biotechnol. 112, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., and Gulati, A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57, 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S., Nadir, S., Shah, Z.U., Shah, A.A., Karunarathna, S.C., Xu, J., Khan, A., Munir, S., and Hasan, F. 2017. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 225, 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. and Mutturi, S. 2020. Expression of a novel α-glucosidase from Aspergillus neoniger in Pichia pastoris and its efficient recovery for synthesis of isomaltooligosaccharides. Enzyme Microb. Technol. 141, 109653.

    Article  CAS  PubMed  Google Scholar 

  • Logrieco, A., Ferracane, R., Haidukowsky, M., Cozzi, G., Visconti, A., and Ritieni, A. 2009. Fumonisin B2 production by Aspergillus niger from grapes and natural occurrence in must. Food Addit. Contam. Part A 26, 1495–1500.

    Article  CAS  Google Scholar 

  • Magnoli, C., Violante, M., Combina, M., Palacio, G., and Dalcero, A. 2003. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Lett. Appl. Microbiol. 37, 179–184.

    Article  CAS  PubMed  Google Scholar 

  • Massi, F.P., Sartori, D., de Souza Ferranti, L., Iamanaka, B.T., Taniwaki, M.H., Vieira, M.L.C., and Fungaro, M.H.P. 2016. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. Int. J. Food Microbiol. 221, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Meijer, M., Houbraken, J.A.M.P., Dalhuijsen, S., Samson, R.A., and de Vries, R.P. 2011. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli. Stud. Mycol. 69, 19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mienda, B.S., Yahya, A., Galadima, I.A., and Shamsir, M.S. 2014. An overview of microbial proteases for industrial applications. Res. J. Pharm. Biol. Chem. Sci. 5, 388–396.

    Google Scholar 

  • Narasimha, G., Sridevi, A., Buddolla, V., Subhosh, C.M., and Rajasekhar, R.B. 2006. Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol. 5, 472–476.

    CAS  Google Scholar 

  • Pailin, T., Kang, D.H., Schmidt, K., and Fung, D.Y. 2001. Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar. Lett. Appl. Microbiol. 33, 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Papagianni, M. and Moo-Young, M. 2002. Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem. 37, 1271–1278.

    Article  CAS  Google Scholar 

  • Paul, S., Ludeña, Y., Villena, G.K., Yu, F., Sherman, D.H., and Gutiérrez-Correa, M. 2017. High-quality draft genome sequence of a biofilm forming lignocellulolytic Aspergillus niger strain ATCC 10864. Stand. Genom. Sci. 12, 37.

    Article  Google Scholar 

  • Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., de Vries, R.P., Albang, R., Albermann, K., et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25, 221–231.

    Article  PubMed  Google Scholar 

  • Perrone, G., Stea, G., Epifani, F., Varga, J., Frisvad, J.C., and Samson, R.A. 2011. Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol. 115, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  • Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., and Ashraf, M. 2019. Microbial proteases applications. Front. Bioeng. Biotechnol. 7, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodarte, M.P., Dias, D.R., Vilela, D.M., and Schwan, R.F. 2011. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Sci. Agron. 33, 457–464.

    CAS  Google Scholar 

  • Sajith, S., Priji, P., Sreedevi, S., and Benjamin, S. 2016. An overview on fungal cellulases with an industrial perspective. J. Nutr. Food Sci. 6, 461.

    Google Scholar 

  • Samson, R.A., Visagie, C.M., Houbraken, J., Hong, S.B., Hubka, V., Klaassen, C.H.W., Perrone, G., Seifert, K.A., Susca, A., Tanney, J.B., et al. 2014. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Show, P.L., Oladele, K.O., Siew, Q.Y., Aziz Zakry, F.A., Lan, J.C.W., and Ling, T.C. 2015. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 8, 271–283.

    Article  CAS  Google Scholar 

  • Silveira, S.T., Oliveira, M.S., Costa, J.A.V., and Kalil, S.J. 2006. Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation. Appl. Biochem. Biotechnol. 128, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Soares, I., Távora, Z., Barcelos, R.P., and Baroni, S. 2012. Microorganism-produced enzymes in the food industry, pp. 83–94. In Valdez, B. (ed.), Scientific, health and social aspects of the food industry. InTech, Rijeka, Croatia. Available from: http://www.intechopen.com/books/scientific-health-and-social-aspects-of-the-food-industry/microorganismproduced-enzymes-in-the-food-industry.

    Google Scholar 

  • Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., and Walia, A. 2021. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11, 428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, P., Cheng, L., Tian, K., Zhang, M., McHunu, N.P., Niu, D., Singh, S., Prior, B., and Wang, Z.X. 2020. Biochemical characterization of two new Aspergillus niger aspartic proteases. 3 Biotech 10, 303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, S.H., Lee, C., Lee, S., Park, J.M., Lee, H.J., Bai, D.H., Yoon, S.S., Choi, J.B., and Park, Y.S. 2013. Analysis of microflora profile in Korean traditional nuruk. J. Microbiol. Biotechnol. 23, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Srilakshmi, J., Madhavi, J., Lavanya, S., and Ammani, K. 2015. Commercial potential of fungal protease: past, present and future prospects. J. Pharm. Chem. Biol. Sci. 2, 218–234.

    CAS  Google Scholar 

  • Srivastava, N., Rathour, R., Jha, S., Pandey, K., Srivastava, M., Thakur, V.K., Sengar, R.S., Gupta, V.K., Mazumder, P.B., Khan, A.F., et al. 2019. Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application. Biomolecules 9, 220.

    Article  CAS  PubMed Central  Google Scholar 

  • Suganthi, R., Benazir, J.F., Santhi, R., Ramesh Kumar, V., Hari, A., Meenakshi, N., Nidhiya, K.A., Kavitha, G., and Lakshmi, R. 2011. Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 3, 1756–1763.

    Google Scholar 

  • Tam, E.W., Chen, J.H., Lau, E.C., Ngan, A.H., Fung, K.S., Lee, K.C., Lam, C.W., Yuen, K.Y., Lau, S.K., and Woo, P.C. 2014. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 52, 1153–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Munster, J.M., Daly, P., Delmas, S., Pullan, S.T., Blythe, M.J., Malla, S., Kokolski, M., Noltorp, E.C.M., Wennberg, K., Fetherston, R., et al. 2014. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet. Biol. 72, 34–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga, J., Frisvad, J.C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., and Samson, R.A. 2011. New and revisited species in Aspergillus section Nigri. Stud. Mycol. 69, 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesth, T.C., Nybo, J.L., Theobald, S., Frisvad, J.C., Larsen, T.O., Nielsen, K.F., Hoof, J.B., Brandl, J., Salamov, A., Riley, R., et al. 2018. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat. Genet. 50, 1688–1695.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Choi, S.J., Kwak, J., Kim, K., Seo, M., Moon, T.W., and Lee, Y.W. 2013. Aspergillus oryzae strains isolated from traditional Korean Nuruk: fermentation properties and influence on rice wine quality. Food Sci. Biotechnol. 22, 425–432.

    Article  CAS  Google Scholar 

  • Yang, S., Lee, J., Kwak, J., Kim, K., Seo, M., and Lee, Y.W. 2011. Fungi associated with the traditional starter cultures used for rice wine in Korea. Appl. Biol. Chem. 54, 933–943.

    CAS  Google Scholar 

  • Yuan, X.L., van der Kaaij, R.M., van den Hondel, C.A.M.J.J., Punt, P.J., van der Maarel, M.J.E.C., Dijkhuizen, L., and Ram, A.F.J. 2008. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol. Genet. Genom. 279, 545–561.

    Article  CAS  Google Scholar 

  • Zulkifli, N.A. and Zakaria, L. 2017. Morphological and molecular diversity of Aspergillus from corn grain used as livestock feed. HAYATI J. Biosci. 24, 26–34.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agricultural Microbiome R&D Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA-918010-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Ah Seo.

Additional information

Conflict of Interest

The authors declare that there are no conflicts of interest.

Electric Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, E., Seo, JA. Enzyme activity of Aspergillus section Nigri strains isolated from the Korean fermentation starter, nuruk. J Microbiol. 60, 998–1006 (2022). https://doi.org/10.1007/s12275-022-2071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2071-6

Keywords

Navigation