Skip to main content
Log in

Genome information of the cellulolytic soil actinobacterium Isoptericola dokdonensis DS-3 and comparative genomic analysis of the genus Isoptericola

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The actinobacterial group is regarded as a reservoir of biologically active natural products and hydrolytic enzymes with the potential for biomedical and industrial applications. Here, we present the complete genome sequence of Isoptericola dokdonensis DS-3 isolated from soil in Dokdo, small islets in the East Sea of Korea. This actinomycete harbors a large number of genes encoding carbohydrate-degrading enzymes, and its activity to degrade carboxymethyl cellulose into glucose was experimentally evaluated. Since the genus Isoptericola was proposed after reclassification based on phylogenetic analysis, strains of Isoptericola have been continuously isolated from diverse environments and the importance of this genus in the ecosystem has been suggested by recent culturomic or metagenomic studies. The phylogenic relationships of the genus tended to be closer among strains that had been isolated from similar habitats. By analyzing the properties of published genome sequences of seven defined species in the genus, a large number of genes for carbohydrate hydrolysis and utilization, as well as several biosynthetic gene clusters for secondary metabolites, were identified. Genomic information of I. dokdonensis DS-3 together with comparative analysis of the genomes of Isoptericola provides insights into understanding this actinobacterial group with a potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, I., Abt, B., Lykidis, A., Klenk, H.P., Kyrpides, N., and Ivanova, N. 2012. Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS ONE 7, e39331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azizi, M., Hemmat, J., Seifati, S.M., Torktaz, I., and Karimi, S. 2015. Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Braz. J. Microbiol. 46, 1225–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakalidou, A., Kämpfer, P., Berchtold, M., Kuhnigk, T., Wenzel, M., and Konig, H. 2002. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int. J. Syst. Evol. Microbiol. 52, 1185–1192.

    CAS  PubMed  Google Scholar 

  • Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y., and van Wezel, G.P. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43.

    Article  PubMed  Google Scholar 

  • Bentur, Y., McGuigan, M., and Koren, G. 1991. Deferoxamine (desferrioxamine). New toxicities for an old drug. Drug Saf. 6, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Bérdy, J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65, 385–395.

    Article  CAS  Google Scholar 

  • Blin, K., Shaw, S., Kloosterman, A.M., Charlop-Powers, Z., van Wezel, G.P., Medema, M.H., and Weber, T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boraston, A.B., Bolam, D.N., Gilbert, H.J., and Davies, G.J. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Dou, W., Li, H., Shi, J., and Xu, Z. 2018. The alginate lyase from Isoptericola halotolerans CGMCC 5336 as a new tool for the production of alginate oligosaccharides with guluronic acid as reducing end. Carbohydr. Res. 470, 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Dastager, S.G. and Damare, S. 2013. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India. Curr. Microbiol. 66, 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Cárdenas, C., Cantillo, A., Rojas, L.Y., Sandoval, T., Fiorentino, S., Robles, J., Ramos, F.A., Zambrano, M.M., and Baena, S. 2017. Microbial diversity of saline environments: searching for cytotoxic activities. AMB Express 7, 223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou, W., Wei, D., Li, H., Li, H., Rahman, M.M., Shi, J., Xu, Z., and Ma, Y. 2013. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr. Polym. 98, 1476–1482.

    Article  CAS  PubMed  Google Scholar 

  • Ghose, T.K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  • Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I.C., Pereira, F., Urbatzka, R., Leão, P.N., and Carvalho, M.F. 2019. Actinobacteria isolated from Laminaria ochroleuca: a source of new bioactive compounds. Front. Microbiol. 10, 683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohain, A., Gogoi, A., Debnath, R., Yadav, A., Singh, B.P., Gupta, V.K., Sharma, R., and Saikia, R. 2015. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants. FEMS Microbiol. Lett. 362, fnv158.

    Article  PubMed  CAS  Google Scholar 

  • Hankin, L. and Anagnostakis, S.L. 1977. Solid media containing carboxymethylcellulose to detect CX cellulose activity of micro-organisms. J. Gen. Microbiol. 98, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Hegemann, J.D., Zimmermann, M., Xie, X., and Marahiel, M.A. 2015. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919.

    Article  CAS  PubMed  Google Scholar 

  • Hermann, L., Mais, C.N., Czech, L., Smits, S.H.J., Bange, G., and Bremer, E. 2020. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol. Chem. 401, 1443–1468.

    Article  CAS  PubMed  Google Scholar 

  • Hoster, F., Schmitz, J.E., and Daniel, R. 2005. Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl. Microbiol. Biotechnol. 66, 434–442.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOGmapper. Mol. Biol. Evol. 34, 2115–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenkins, J. and Pickersgill, R. 2001. The architecture of parallel betahelices and related folds. Prog. Biophys. Mol. Biol. 77, 111–175.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z.K., Tuo, L., Huang, D.L., Osterman, I.A., Tyurin, A.P., Liu, S.W., Lukyanov, D.A., Sergiev, P.V., Dontsova, O.A., Korshun, V.A., et al. 2018. Diversity, novelty, and antimicrobial activity of endophytic actinobacteria from mangrove plants in Beilun estuary national nature reserve of Guangxi, China. Front. Microbiol. 9, 868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kämpfer, P., Glaeser, S.P., Kloepper, J.W., Hu, C.H., McInroy, J.A., Martin, K., and Busse, H.J. 2016. Isoptericola cucumis sp. nov., isolated from the root tissue of cucumber (Cucumis sativus). Int. J. Syst. Evol. Microbiol. 66, 2784–2788.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, G., Soni, P., Tewari, R., and Sharma, R. 2014. Isolation and characterization of a nitrile-hydrolysing bacterium Isoptericola variabilis RGT01. Indian J. Microbiol. 54, 232–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koski, L.B., Gray, M.W., Lang, B.F., and Burger, G. 2005. AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics 6, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, D., Jagadeeshwari, U., Krishnaiah, A., Suresh, G., Sasikala, C., and Ramana, C.V. 2021. Isoptericola sediminis sp. nov., isolated from Chilika Lagoon. Curr. Microbiol. 78, 848–855.

    Article  CAS  PubMed  Google Scholar 

  • Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laslett, D. and Canback, B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D.W., Lee, H., Kwon, B.O., Khim, J.S., Yim, U.H., Kim, B.S., and Kim, J.J. 2018. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ. Pollut. 241, 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495.

    Article  CAS  PubMed  Google Scholar 

  • Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A., and Parkhill, J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelechano, V. and Pérez-Ortín, J.E. 2008. The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast 25, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, S., Mahmoud, H., Khanafer, M., Al-Habib, A., and Al-Hasan, R. 2010. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb. Ecol. 60, 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Santhi, V.S., Gupta, A., Saranya, S., and Jebakumar, S.R.D. 2014. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production. Biotechnol. Rep. 1-2, 8–14.

    Article  Google Scholar 

  • Schneider, N.O., Tassoulas, L.J., Zeng, D., Laseke, A.J., Reiter, N.J., Wackett, L.P., and Maurice, M.S. 2020. Solving the conundrum: Widespread proteins annotated for urea metabolism in Bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270.

    Article  CAS  PubMed  Google Scholar 

  • Schumann, P. and Stackebrandt, E. 2014. The Family Promicromonosporaceae. In Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds.), The Prokaryotes-Actinobacteria, pp. 701–724. Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Spiridonov, N.A. and Wilson, D.B. 1999. Characterization and cloning of CelR, a transcriptional regulator of cellulase genes from Thermomonospora fusca. J. Biol. Chem. 274, 13127–13132.

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E., Schumann, P., and Cui, X.L. 2004. Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 54, 685–688.

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran, R.K., Singhania, R.R., and Pandey, A. 2005. Microbial cellulases - production, applications and challenges. J. Sci. Ind. Res. 64, 832–844.

    CAS  Google Scholar 

  • Teather, R.M. and Wood, P.J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng, M., Liao, H.C., Chiang, W.P., and Yuan, G.F. 2011. Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 61, 1667–1670.

  • Ulanova, D. and Goo, K.S. 2015. Diversity of actinomycetes isolated from subseafloor sediments after prolonged low-temperature storage. Folia Microbiol. 60, 211–216.

    Article  CAS  Google Scholar 

  • Ventorino, V., Aliberti, A., Faraco, V., Robertiello, A., Giacobbe, S., Ercolini, D., Amore, A., Fagnano, M., and Pepe, O. 2015. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci. Rep. 5, 8161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F., and van Sinderen, D. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71, 495–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Chen, L., Zhang, Z., Wang, X., Qin, S., and Yan, P. 2017. Screening of alginate lyase-excreting microorganisms from the surface of brown algae. AMB Express 7, 74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Y., Li, W.J., Tian, W., Zhang, L.P., Xu, L., Shen, Q.R., and Shen, B. 2010. Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 60, 904–908.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Liu, F., Liu, Y.C., Zhang, Z.H., Zhou, T.T., Liu, X., Shen, Q.R., and Shen, B. 2011. Identification of chitinases Is-chiA and Is-chiB from Isoptericola jiangsuensis CLG and their characterization. Appl. Microbiol. Biotechnol. 89, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J.H., Schumann, P., Kang, S.J., Jung, S.Y., and Oh, T.K. 2006. Isoptericola dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56, 2893–2897.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.Q., Schumann, P., Li, W.J., Chen, G.Z., Tian, X.P., Stackebrandt, E., Xu, L.H., and Jiang, C.L. 2005. Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China. Int. J. Syst. Evol. Microbiol. 55, 1867–1870.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2021M3A9I4021432 and NRF-2020R1-C1C1004778 to S.-K.K. and NRF-2016R1E1A1A01943552 to J.F.K.). Y.B., K.K., and H.-K.L. are fellowship awardees of the Brain Korea 21 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soon-Kyeong Kwon or Jihyun F. Kim.

Additional information

Conflict of Intestest

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, Y., Lee, S., Kim, K. et al. Genome information of the cellulolytic soil actinobacterium Isoptericola dokdonensis DS-3 and comparative genomic analysis of the genus Isoptericola. J Microbiol. 59, 1010–1018 (2021). https://doi.org/10.1007/s12275-021-1452-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1452-6

Keywords

Navigation