Skip to main content
Log in

Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In prokaryotes, toxin-antitoxin (TA) systems are commonly found. They likely reflect the adaptation of pathogenic bacteria or extremophiles to various unfavorable environments by slowing their growth rate. Genomic analysis of the extremophile Deinococcus radiodurans R1 revealed the presence of eight type II TA systems, including the genes dr0417, dr0660, dr1530, dr0690, and dr1807. Expression of these toxin genes led to inhibition of Escherichia coli growth, whereas their antidote antitoxins were able to recover the growth defect. Remarkably, Dr0417 (DrMazF) showed endoribonuclease activity toward rRNAs as well as mRNAs, as determined by in vivo and in vitro RNA cleavage assays, and this activity was inhibited by Dr0416 (DrMazE). It was also found that the expression of dr0416–0417 module is directly regulated by the DrMazE-MazF complex. Furthermore, this TA module was induced under stress conditions and plays an important role in survival. To understand the regulatory mechanism at the molecular level, we determined the first high-resolution structures of DrMazF alone and of the DrMazE-MazF complex. In contrast with the hetero-hexameric state of typical MazE-MazF complexes found in other species, DrMazE-MazF crystal structure consists of a hetero-trimer, with the DNA-binding domain of DrMazE undergoing self-cleavage at the flexible linker loop. Our structure revealed that the unique residue R54 provides an additional positive charge to the substrate-binding pocket of DrMazF, its mutation significantly affects the endonuclease activity. Thus, our work reports the unique structural and biochemical features of the DrMazE-MazF system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, D.H., Lee, K.Y., Lee, S.J., Park, S.J., Yoon, H.J., Kim, S.J., and Lee, B.J. 2017. Structural analyses of the MazEF4 toxin-antitoxin pair in Mycobacterium tuberculosis provide evidence for a unique extracellular death factor. J. Biol. Chem. 292, 18832–18847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alawneh, A.M., Qi, D., Yonesaki, T., and Otsuka, Y. 2016. An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module. Mol. Microbiol. 99, 188–198.

    Article  CAS  PubMed  Google Scholar 

  • Basu, B. and Apte, S.K. 2012. Gamma radiation-induced proteome of Deinococcus radiodurans primarily targets DNA repair and oxidative stress alleviation. Mol. Cell. Proteomics 11, M111.011734.

    Article  PubMed  CAS  Google Scholar 

  • Battista, J.R. 1997. Against all odds: The survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51, 203–224.

    Article  CAS  PubMed  Google Scholar 

  • Battista, J.R. 2000. Radiation resistance: the fragments that remain. Curr. Biol. 10, R204–R205.

    Article  CAS  PubMed  Google Scholar 

  • Bonacossa de Almeida, C., Coste, G., Sommer, S., and Bailone, A. 2002. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol. Genet. Genomics 268, 28–41.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E. and Hwang, J. 2018. The GTPase BipA expressed at low temperature in Escherichia coli assists ribosome assembly and has chaperone-like activity. J. Biol. Chem. 293, 18404–18419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, E., Jeon, H., Oh, J.I., and Hwang, J. 2020. Overexpressed L20 rescues 50S ribosomal subunit assembly defects of bipA-deletion in Escherichia coli. Front. Microbiol. 10, 2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard, M., Jørgensen, M.G., and Gerdes, K. 2010. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75, 333–348.

    Article  CAS  PubMed  Google Scholar 

  • Culviner, P.H. and Laub, M.T. 2018. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol. Cell 70, 868–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly, M.J. and Minton, K.W. 1995. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 177, 5495–5505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly, M.J. and Minton, K.W. 1996. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178, 4461–4471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko, K.A. and Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Feyter, R., Wallace, C., and Lane, D. 1989. Autoregulation of the ccd operon in the F plasmid. Mol. Gen. Genet. 218, 481–486.

    Article  CAS  PubMed  Google Scholar 

  • de la Tour, C.B., Boisnard, S., Norais, C., Toueille, M., Bentchikou, E., Vannier, F., Cox, M.M., Sommer, S., and Servant, P. 2011. The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity. DNA Repair 10, 1223–1231.

    Article  PubMed Central  CAS  Google Scholar 

  • de la Tour, C.B., Passot, F.M., Toueille, M., Mirabella, B., Guérin, P., Blanchard, L., Servant, P., de Groot, A., Sommer, S., and Armengaud, J. 2013. Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 13, 3457–3469.

    Article  PubMed  CAS  Google Scholar 

  • Dhanasingh, I., Choi, E., Hwang, J., and Lee, S.H. 2018. Crystallization and preliminary X-ray diffraction analysis of a toxin-antitoxin MazEF complex from the extremophile Deinococcus radiodurans. Biodesign 6, 23–27.

    Google Scholar 

  • Dörr, T., Vulić, M., and Lewis, K. 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duggan, D.E., Anderson, A.W., Elliker, P.R., and Cain, R.F. 1959. Ultraviolet exposure studies on a gamma radiation resistant micrococcus isolated from food. J. Food Sci. 24, 376–382.

    Article  Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  CAS  Google Scholar 

  • Engelberg-Kulka, H. and Glaser, G. 1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70.

    Article  CAS  PubMed  Google Scholar 

  • Fraikin, N., Goormaghtigh, F., and Van Melderen, L. 2020. Type II toxin-antitoxin systems: evolution and revolutions. J. Bacteriol. 202, e00763–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Z., Donegan, N.P., Memmi, G., and Cheung, A.L. 2007. Characterization of MazFSa, an endoribonuclease from Staphylococcus aureus. J. Bacteriol. 189, 8871–8879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafourian, S., Raftari, M., Sadeghifard, N., and Sekawi, Z. 2014. Toxin-antitoxin systems: classification, biological function and application in biotechnology. Curr. Issues Mol. Biol. 16, 9–14.

    PubMed  Google Scholar 

  • Giuliodori, A.M., Gualerzi, C.O., Soto, S., Vila, J., and Tavío, M.M. 2007. Review on bacterial stress topics. Ann. NY Acad. Sci. 1113, 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Goeders, N. and Van Melderen, L. 2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins 6, 304–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms, A., Brodersen, D.E., Mitarai, N., and Gerdes, K. 2018. Toxins, Targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70, 768–784.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499.

    Article  CAS  PubMed  Google Scholar 

  • Headd, J.J., Echols, N., Afonine, P.V., Grosse-Kunstleve, R.W., Chen, V.B., Moriarty, N.W., Richardson, D.C., Richardson, J.S., and Adams, P.D. 2012. Use of knowledge-based restraints in phenix. refine to improve macromolecular refinement at low resolution. Acta Crystallogr. D Biol. Crystallogr. 68, 381–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, H., Watanabe, H., Takehisa, M., and Iizuka, H. 1983. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agr. Biol. Chem. 47, 1239–1247.

    CAS  Google Scholar 

  • Kamada, K., Hanaoka, F., and Burley, S.K. 2003. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11, 875–884.

    Article  CAS  PubMed  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga, M., Otsuka, Y., Lemire, S., and Yonesaki, T. 2011. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187, 123–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisko, A. and Radman, M. 2013. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb. Perspect. Biol. 5, a012765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin-Zaidman, S., Englander, J., Shimoni, E., Sharma, A.K., Minton, K.W., and Minsky, A. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299, 254–256.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Weng, Y., Ma, X., Tian, B., Dai, S., Jin, Y., Liu, M., Li, J., Yu, J., and Hua, Y. 2017. Deinococcus radiodurans toxin-antitoxin MazEF-dr mediates cell death in response to DNA damage stress. Front. Microbiol. 8, 1427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, S., Jung, J.H., Blanchard, L., and de Groot, A. 2019. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol. Rev. 43, 19–52.

    Article  CAS  PubMed  Google Scholar 

  • Lobato-Márquez, D., Díaz-Orejas, R., and Garcia-del Portillo, F. 2016. Toxin-antitoxins and bacterial virulence. FEMS Microbiol. Rev. 40, 592–609.

    Article  PubMed  CAS  Google Scholar 

  • Magnuson, R. and Yarmolinsky, M.B. 1998. Corepression of the P1 addiction operon by Phd and Doc. J. Bacteriol. 180, 6342–6351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve, E., Shakespeare, L.J., Jørgensen, M.G., and Gerdes, K. 2011. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. USA 108, 13206–13211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, K.S., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Lapidus, A., Copeland, A., Kim, E., Land, M., et al. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE 2, e955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marianovsky, I., Aizenman, E., Engelberg-Kulka, H., and Glaser, G. 2001. The regulation of the Escherichia coli mazEF promoter in-volves an unusual alternating palindrome. J. Biol. Chem. 276, 5975–5984.

    Article  CAS  PubMed  Google Scholar 

  • Masuda, H. and Inouye, M. 2017. Toxins of prokaryotic toxin-antitoxin systems with sequence-specific endoribonuclease activity. Toxins 9, 140.

    Article  PubMed Central  CAS  Google Scholar 

  • Mattimore, V. and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178, 633–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, USA.

    Google Scholar 

  • Minsky, A., Shimoni, E., and Englander, J. 2006. Ring-like nucleoids and DNA repair through error-free nonhomologous end joining in Deinococcus radiodurans. J. Bacteriol. 188, 6047–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley, B.E. and Mattingly, A. 1971. Repair of irradiated transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J. Bacteriol. 105, 976–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nariya, H. and Inouye, M. 2008. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, M., Fujitani, S., Mao, X., Inouye, S., and Komano, T. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22, 757–767.

    Article  CAS  PubMed  Google Scholar 

  • Ohba, H., Satoh, K., Yanagisawa, T., and Narumi, I. 2005. The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene 363, 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Overgaard, M., Borch, J., Jørgensen, M.G., and Gerdes, K. 2008. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69, 841–857.

    Article  CAS  PubMed  Google Scholar 

  • Page, R. and Peti, W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, K., Christensen, S.K., and Gerdes, K. 2002. Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol. Microbiol. 45, 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Prisant, M.G., Williams, C.J., Chen, V.B., Richardson, J.S., and Richardson, D.C. 2020. New tools in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink “waters,” and NGL Viewer to recapture online 3D graphics. Protein Sci. 29, 315–329.

    Article  CAS  PubMed  Google Scholar 

  • Ramage, H.R., Connolly, L.E., and Cox, J.S. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosendahl, S., Tamman, H., Brauer, A., Remm, M., and Horak, R. 2020. Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Sci. Rep. 10, 9230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenbacher, F.P., Suzuki, M., Hurley, J.M., Montville, T.J., Kirn, T.J., Ouyang, M., and Woychik, N.A. 2012. Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage. J. Bacteriol. 194, 3464–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmientos, P., Sylvester, J.E., Contente, S., and Cashel, M. 1983. Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell 32, P1337–P1346.

    Article  Google Scholar 

  • Sevin, E.W. and Barloy-Hubler, F. 2007. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol. 8, R155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao, Y., Harrison, E.M., Bi, D., Tai, C., He, X., Ou, H.Y., Rajakumar, K., and Deng, Z. 2011. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res. 39, D606–D611.

    Article  CAS  PubMed  Google Scholar 

  • Simanshu, D.K., Yamaguchi, Y., Park, J.H., Inouye, M., and Patel, D.J. 2013. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol. Cell 52, 447–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons, R.W., Houman, F., and Kleckner, N. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Slade, D., Lindner, A.B., Paul, G., and Radman, M. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136, 1044–1055.

    Article  CAS  PubMed  Google Scholar 

  • Slade, D. and Radman, M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi, A., Dewan, P.C., Siddique, S.A., and Varadarajan, R. 2014. MazF-induced growth inhibition and persister generation in Escherichia coli. J. Biol. Chem. 289, 4191–4205.

    Article  CAS  PubMed  Google Scholar 

  • Vagin, A. and Teplyakov, A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25.

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten, N., Knapen, W.J., Kint, C.I., Liebens, V., Van den Bergh, B., Dewachter, L., Michiels, J.E., Fu, Q., David, C.C., Fierro, A.C., et al. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol. Cell 59, P9–P21.

    Article  CAS  Google Scholar 

  • Villa, J.K., Amador, P., Janovsky, J., Bhuyan, A., Saldanha, R., Lamkin, T.J., and Contreras, L.M. 2017. A genome-wide search for ionizing-radiation-responsive elements in Deinococcus radiodurans reveals a regulatory role for the DNA gyrase subunit A gene’s 5′ untranslated region in the radiation and desiccation response. Appl. Environ. Microbiol. 83, e00039–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn, M.D., Murshudov, G.N., and Papiz, M.Z. 2003. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321.

    Article  CAS  PubMed  Google Scholar 

  • Winther, K.S. and Gerdes, K. 2012. Regulation of enteric vapBC transcription: induction by VapC toxin dimer-breaking. Nucleic Acids Res. 40, 4347–4357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., et al. 2001. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29, 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B., and Radman, M. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.P., Wang, Q., Quan, S.W., Yu, X.Q., Wang, Y., Guo, D.D., Peng, L., Feng, H.Y., and He, Y.X. 2020. Type II toxin-antitoxin system in bacteria: activation, function, and mode of action. Biophys. Rep. 6, 68–79.

    Article  CAS  Google Scholar 

  • Zhang, C., Wei, J., Zheng, Z., Ying, N., Sheng, D., and Hua, Y. 2005. Proteomic analysis of Deinococcus radiodurans recovering from γ-irradiation. Proteomics 5, 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, J., Hoeflich, K.P., Ikura, M., Qing, G., and Inouye, M. 2003a. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, Y., and Inouye, M. 2003b. Characterization of the interactions within the mazEF addiction module of Escherichia coli. J. Biol. Chem. 278, 32300–32306.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Zhang, Y., Teh, J.S., Zhang, J., Connell, N., Rubin, H., and Inouye, M. 2006. Characterization of mRNA interferases from Mycobacterium tuberculosis. J. Biol. Chem. 281, 18638–18643.

    Article  CAS  PubMed  Google Scholar 

  • Zorzini, V., Buts, L., Sleutel, M., Garcia-Pino, A., Talavera, A., Haesaerts, S., De Greve, H., Cheung, A., van Nuland, N.A., and Loris, R. 2014. Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics. Nucleic Acids Res. 42, 6709–6725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorzini, V., Mernik, A., Lah, J., Sterckx, Y.G., De Jonge, N., Garcia-Pino, A., De Greve, H., Versées, W., and Loris, R. 2016. Substrate recognition and activity regulation of the Escherichia coli mRNA endonuclease MazF. J. Biol. Chem. 291, 10950–10960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the staff at beamlines PLS-7A at the Pohang Light Source (PLS) for technical support during data collection. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2019R1F1A1049035 to SHL). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A2B6003179). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A3A01100161). We thank Dr. Ho-Seong Seo for providing Deinococcus radiodurans R1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Haeng Lee or Jihwan Hwang.

Additional information

Conflict of Interest

We have no conflicts of interest to report.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Supplementary Materials and Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasingh, I., Choi, E., Lee, J. et al. Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol. 59, 186–201 (2021). https://doi.org/10.1007/s12275-021-0523-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0523-z

Keywords

Navigation