Skip to main content
Log in

Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gram-negative bacteria secrete outer membrane vesicles (OMVs) that play critical roles in intraspecies, interspecies, and bacteria-environment interactions. Some OMVs, such as those produced by Pseudomonas aeruginosa, have previously been shown to possess antimicrobial activity against competitor species. In the current study, we demonstrate that OMVs from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. We show that a number of antimicrobial compounds, including peptidoglycan hydrolases, 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline (HMNQ) and long-chain rhamnolipid are present in or tightly associate with B. thailandensis OMVs. Furthermore, we demonstrate that HMNQ and rhamnolipid possess antimicrobial and antibiofilm properties against methicillin-resistant Staphylococcus aureus (MRSA). These findings indicate that B. thailandensis secretes antimicrobial OMVs that may impart a survival advantage by eliminating competition. In addition, bacterial OMVs may represent an untapped resource of novel therapeutics effective against bio-film-forming and multidrug-resistant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves, N.J., Turner, K.B., Medintz, I.L., Walper, S.A. 2016. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci. Rep.6, 24866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge, T.J. 1999. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol.181, 4725–4733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge, T.J., Makin, S.A., Kadurugamuwa, J.L., and Li, Z. 1997. Interactions between biofilms and the environment. FEMS Microbiol. Rev.20, 291–303.

    CAS  PubMed  Google Scholar 

  • Biggins, J.B., Gleber, C.D., Brady, S.F. 2011. Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org. Lett.13, 1536–1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biggins, J.B., Ternei, M.A., Brady, S.F. 2012. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J. Am. Chem. Soc.134, 13192–13195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnington, K.E. Kuehn, M.J. 2014. Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta1843, 1612–1619.

    CAS  PubMed  Google Scholar 

  • Brett, P.J., DeShazer, D., Woods, D.E. 1998. Burkholderia thai-landensis sp. nov., a Burkholderia pseudomallei-Wke species. Int. ]. Syst. Bacteriol.48, 317–320.

    CAS  Google Scholar 

  • Calfee, M.W., Shelton, J.G., McCubrey, J.A., Pesci, E.C. 2005. Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect. Immun.73, 878–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, Atlanta, Georgia, USA.

    Google Scholar 

  • Costa, S.G.V.A.O., Deziel, E., and Lepine, F. 2011. Characterization of rhamnolipid production by Burkholderia glumae. Lett. Appl. Microbiol.53, 620–627.

    CAS  PubMed  Google Scholar 

  • Davies, D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. DrugDiscov.2, 114–122.

    CAS  Google Scholar 

  • De Rienzo, M.A. Martin, P.J. 2016. Effect of mono and dirhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006. Curr. Microbiol.73, 183–189.

    PubMed  PubMed Central  Google Scholar 

  • Deatherage, B.L. Cookson, B.T. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun.80, 1948–1957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeFrancesco, A.S., Masloboeva, N., Syed, A.K., DeLoughery, A., Bradshaw, N., Li, G.W., Gilmore, M.S., Walker, S., and Losick, R. 2017. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc. Natl. Acad. Sci. USA114, E5969–E5978.

    CAS  PubMed  Google Scholar 

  • Deziel, E., Lepine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins, R.G., and Rahme, L.G. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA101, 1339–1344.

    CAS  PubMed  Google Scholar 

  • Dorward, D.W. Garon, C.F. 1990. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl. Environ. Microbiol.56, 1960–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubeau, D., Deziel, E., Woods, D.E., and Lepine, F. 2009. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol.9, 263.

    PubMed  PubMed Central  Google Scholar 

  • Elshikh, M., Funston, S., Chebbi, A., Ahmed, S., Marchant, R., Banat, I.M. 2017. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N. Biotechnol.36, 26–36.

    CAS  PubMed  Google Scholar 

  • Evans, A.G.L., Davey, H.M., Cookson, A., Currinn, H., Cooke-Fox, G., Stanczyk, P.J., Whitworth, D.E. 2012. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology158, 2742–2752.

    CAS  PubMed  Google Scholar 

  • Fukushima, T. and Sekiguchi, J. 2016. Zymographic techniques for the analysis of bacterial cell wall in Bacillus. In Hong, H.J. (ed.), Bacterial cell wall homeostasis. Methods in Molecular Biology, vol. 1440, pp. 87–98. Humana Press, New York, USA.

    CAS  Google Scholar 

  • Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, G., Givskov, M., Ersboll, B.K., and Molin, S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology146, 2395–2407.

    CAS  PubMed  Google Scholar 

  • Jarvis, F. and Johnson, M. 1949. A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc.71, 4124–4126.

    CAS  Google Scholar 

  • Kadurugamuwa, J.L. Beveridge, T.J. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaparakis-Liaskos, M. Ferrero, R.L. 2015. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol.15, 375–387.

    CAS  Google Scholar 

  • Knappe, T.A., Linne, U., Zirah, S., Rebuffat, S., Xie, X., Marahiel, M.A. 2008. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J. Am. Chem. Soc.130, 11446–11454.

    CAS  PubMed  Google Scholar 

  • Kondo, S., Horiuchi, Y., Hamada, M., Takeuchi, T., and Umezawa, H. 1979. A new antitumor antibiotic, bactobolin produced by Pseudomonas. Antibiot. 32, 1069–1071.

    CAS  Google Scholar 

  • Korber, D., Lawrence, J., Hendry, M., and Caldwell, D. 1993. Analysis of spatial variability within mot+ and mot-Pseudomonas fluorescens biofilms using representative elements. Biofouling7, 339–358.

    Google Scholar 

  • Li, Z., Clarke, A.J., Beveridge, T.J. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol.180, 5478–5483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Li, Y.P., Song, C.X., Xiao, M., Wang, J.L., Liu, X.S. 2014. Identification and functional characterization of a peptidogly-can recognition protein from the cotton bollworm, Helicoverpa armigera. Arch. Insect Bio chem. Physiol.86, 240–258.

    CAS  Google Scholar 

  • Liu, X., Biswas, S., Berg, M.G., Antapli, C.M., Xie, F., Wang, Q., Tang, M.C, Tang, G.L., Zhang, L., Dreyfuss, G., et al. 2013. Ge-nomics-guided discovery of thailanstatins A, B, and C As pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J. Nat. Prod.76, 685–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald, K.L. Beveridge, T.J. 2002. Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAOl on Gram-positive bacteria. Can. J. Microbiol.48, 810–820.

    CAS  PubMed  Google Scholar 

  • Mashburn, L.M. and Whiteley, M. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature437, 422–425.

    CAS  PubMed  Google Scholar 

  • Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K., and Whiteley, M. 2008a. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol.69, 491–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashburn-Warren, L, McLean, R.J., and Whiteley, M. 2008b. Gram-negative outer membrane vesicles: beyond the cell surface. Geo-biology6, 214–219.

    CAS  Google Scholar 

  • Mashburn-Warren, L.M. and Whiteley, M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol.61, 839–846.

    CAS  PubMed  Google Scholar 

  • Mellroth, P., Karlsson, J., and Steiner, H. 2003. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem.278, 7059–7064.

    CAS  PubMed  Google Scholar 

  • Mihai, M.M., Holban, A.M., Giurcaneanu, C., Popa, L.G., Oanea, R.M., Lazar, V., Chifiriuc, M.C., Popa, M., Popa, M.I. 2015. Microbial biofilms: impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr. Top. Med. Chem.15, 1552–1576.

    CAS  PubMed  Google Scholar 

  • Nguyen, T., Ishida, K., Jenke-Kodama, H., Dittmann, E., Gurgui, C., Hochmuth, T., Taudien, S., Platzer, M., Hertweck, C., and Piel, J. 2008. Exploiting the mosaic structure of trans-acyltrans-ferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol.26, 225–233.

    CAS  PubMed  Google Scholar 

  • Nieves, W., Asakrah, S., Qazi, O., Brown, K.A., Kurtz, J., Aucoin, D.P., McLachlan, J.B., Roy, C.J., Morici, L.A. 2011. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine29, 8381–8389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves, W., Petersen, H., Judy, B.M., Blumentritt, C.A., Russell-Lodrigue, K., Roy, C.J., Torres, A.G., Morici, L.A. 2014. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol.21, 747–754.

    PubMed  PubMed Central  Google Scholar 

  • NIH. 2002. NIH guide: Research on microbial biofilms. <https://grants.nih.gov/grants/guide/pa-files/pa-03-047.html>

    Google Scholar 

  • O’neill, J.I.M. 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist.20, 1–16.

    Google Scholar 

  • Paulino, B.N., Pessoa, M.G., Mano, M.C., Molina, G., Neri-Numa, I.A., Pastore, G.M. 2016. Current status in biotechnological production and applications of glycolipid bio surfactants. Appl. Microbiol. Biotechnol.100, 10265–10293.

    CAS  PubMed  Google Scholar 

  • Petersen, H., Nieves, W., Russell-Lodrigue, K., Roy, C.J., and Morici, L.A. 2014. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol.8, 38–42.

    PubMed  PubMed Central  Google Scholar 

  • Renelli, M., Matias, V., Lo, R.Y., Beveridge, T.J. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAOl and their genetic transformation potential. Microbiology150, 2161–2169.

    CAS  PubMed  Google Scholar 

  • Rosenthal, R.S. and Dziarski, R. 1994. Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol.235, 253–285.

    CAS  PubMed  Google Scholar 

  • Schooling, S.R. Beveridge, T.J. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol.188, 5945–5957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost, M.R., Chandler, J.R., Blodgett, J.A., Lima, P.S., Duerkop, B.A, Oinuma, K., Greenberg, E.P., and Clardy, J. 2010. Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org. Lett.12, 716–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrom, A.E., Sandblad, L., Uhlin, B.E., Wai, S.N. 2015. Membrane vesicle-mediated release of bacterial RNA. Sci. Rep.5, 15329.

    PubMed  PubMed Central  Google Scholar 

  • Tashiro, Y., Inagaki, A., Shimizu, M., Ichikawa, S., Takaya, N., Na-kajima-Kambe, T., Uchiyama, H., and Nomura, N. 2011. Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem.75, 605–607.

    CAS  PubMed  Google Scholar 

  • Vial, L., Lepine, F., Milot, S., Groleau, M.C., Dekimpe, V., Woods, D.E., and Deziel, E. 2008. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J. Bacteriol.190, 5339–5352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorregaard, M. 2008. Comstat2- a modern 3D image analysis environment for biofilms. Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark.

    Google Scholar 

  • WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/

    Google Scholar 

  • Wood, T.L., Gong, T., Zhu, L., Miller, J., Miller, D.S., Yin, B., Wood, T.K. 2018. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiomes4, 22.

    PubMed  PubMed Central  Google Scholar 

  • Wu, Y. Seyedsayamdost, M.R. 2017. Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem. Biol.24, 1437–1444.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to LM from the Committee on Research at Tulane University. We thank Jibao He, supervisor of the Microscopy Lab at Tulane University Coordinated Instrument Facility, for assistance with electron microscopy, and Qi Zhao, supervisor of the Organic Lab at Tulane University Coordinated Instrument Facility, for assistance with NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

YW, KH, JF, JB, and LM conceived and designed the experiments. YW, JH, and CC performed the experiments. YW, CC, JB, and WW analyzed the data. YW and LM wrote the paper.

Corresponding author

Correspondence to Lisa A. Morici.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships thatcould be construed as a potential conflict of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hoffmann, J.P., Chou, CW. et al. Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. J Microbiol. 58, 550–562 (2020). https://doi.org/10.1007/s12275-020-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0028-1

Keywords

Navigation